These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29322094)

  • 1. Electrically switchable metadevices via graphene.
    Balci O; Kakenov N; Karademir E; Balci S; Cakmakyapan S; Polat EO; Caglayan H; Ă–zbay E; Kocabas C
    Sci Adv; 2018 Jan; 4(1):eaao1749. PubMed ID: 29322094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From metamaterials to metadevices.
    Zheludev NI; Kivshar YS
    Nat Mater; 2012 Nov; 11(11):917-24. PubMed ID: 23089997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating microsystems with metamaterials towards metadevices.
    Zhao X; Duan G; Li A; Chen C; Zhang X
    Microsyst Nanoeng; 2019; 5():5. PubMed ID: 31057932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations.
    Kim WY; Kim HD; Kim TT; Park HS; Lee K; Choi HJ; Lee SH; Son J; Park N; Min B
    Nat Commun; 2016 Jan; 7():10429. PubMed ID: 26813710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications.
    Xu C; Ren Z; Wei J; Lee C
    iScience; 2022 Feb; 25(2):103799. PubMed ID: 35198867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically Tunable Multifunctional Polarization-Dependent Metasurfaces Integrated with Liquid Crystals in the Visible Region.
    Hu Y; Ou X; Zeng T; Lai J; Zhang J; Li X; Luo X; Li L; Fan F; Duan H
    Nano Lett; 2021 Jun; 21(11):4554-4562. PubMed ID: 34047184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active terahertz spin Hall effect in vanadium dioxide metasurfaces.
    Kang L; Wu Y; Werner DH
    Opt Express; 2021 Mar; 29(6):8816-8823. PubMed ID: 33820323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-enabled electrically switchable radar-absorbing surfaces.
    Balci O; Polat EO; Kakenov N; Kocabas C
    Nat Commun; 2015 Mar; 6():6628. PubMed ID: 25791719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.
    Lee S; Kang B; Keum H; Ahmed N; Rogers JA; Ferreira PM; Kim S; Min B
    Sci Rep; 2016 Jun; 6():27621. PubMed ID: 27283594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-based metasurfaces for switching polarization states of anomalous reflection and focusing.
    Zhu H; Chen S; Wen J; Wang J; Chen L
    Opt Lett; 2019 Dec; 44(23):5764-5767. PubMed ID: 31774774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of metasurfaces: physics and applications.
    Chen HT; Taylor AJ; Yu N
    Rep Prog Phys; 2016 Jul; 79(7):076401. PubMed ID: 27308726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable/Reconfigurable Metasurfaces: Physics and Applications.
    He Q; Sun S; Zhou L
    Research (Wash D C); 2019; 2019():1849272. PubMed ID: 31549047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface.
    Wang D; Zhang L; Gu Y; Mehmood MQ; Gong Y; Srivastava A; Jian L; Venkatesan T; Qiu CW; Hong M
    Sci Rep; 2015 Oct; 5():15020. PubMed ID: 26442614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrical tradeoffs in graphene-based deeply-scaled electrically reconfigurable metasurfaces.
    Arezoomandan S; Sensale-Rodriguez B
    Sci Rep; 2015 Mar; 5():8834. PubMed ID: 25744135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromechanically Reconfigurable Terahertz Stereo Metasurfaces.
    Prakash S; Pitchappa P; Agrawal P; Jani H; Zhao Y; Kumar A; Thong J; Linke J; Ariando A; Singh R; Venkatesan T
    Adv Mater; 2024 Aug; 36(32):e2402069. PubMed ID: 38815130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically tunable multifunctional metasurface for integrating phase and amplitude modulation based on hyperbolic metamaterial substrate.
    Lee Y; Kim SJ; Yun JG; Kim C; Lee SY; Lee B
    Opt Express; 2018 Nov; 26(24):32063-32073. PubMed ID: 30650785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications.
    Tang W; Wang L; Chen X; Liu C; Yu A; Lu W
    Nanoscale; 2016 Aug; 8(33):15196-204. PubMed ID: 27337105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial.
    Cong L; Pitchappa P; Lee C; Singh R
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28470981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.