These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29322283)

  • 1. Rational design of engineered microbial cell surface multi-enzyme co-display system for sustainable NADH regeneration from low-cost biomass.
    Han L; Liang B; Song J; Liu A
    J Ind Microbiol Biotechnol; 2018 Feb; 45(2):111-121. PubMed ID: 29322283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A membraneless starch/O
    Cai Y; Wang M; Xiao X; Liang B; Fan S; Zheng Z; Cosnier S; Liu A
    Biosens Bioelectron; 2022 Jul; 207():114197. PubMed ID: 35358946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production.
    Liu F; Banta S; Chen W
    Chem Commun (Camb); 2013 May; 49(36):3766-8. PubMed ID: 23535691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New approaches to NAD(P)H regeneration in the biosynthesis systems.
    Han L; Liang B
    World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD
    Xu MQ; Li FL; Yu WQ; Li RF; Zhang YW
    Int J Biol Macromol; 2020 Feb; 144():1013-1021. PubMed ID: 31669469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction to: Rational design of engineered microbial cell surface multi-enzyme co-display system for sustainable NADH regeneration from low-cost biomass.
    Han L; Liang B; Song J; Liu A
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):855. PubMed ID: 30099645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and characterization of a novel glucose dehydrogenase-leucine dehydrogenase fusion enzyme for the biosynthesis of L-tert-leucine.
    Liao L; Zhang Y; Wang Y; Fu Y; Zhang A; Qiu R; Yang S; Fang B
    Microb Cell Fact; 2021 Jan; 20(1):3. PubMed ID: 33407464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autodisplay of glucose-6-phosphate dehydrogenase for redox cofactor regeneration at the cell surface.
    Schüürmann J; Quehl P; Lindhorst F; Lang K; Jose J
    Biotechnol Bioeng; 2017 Aug; 114(8):1658-1669. PubMed ID: 28401536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Display of Sequential Enzymes on Yeast Surface with Enhanced Biocatalytic Activity toward Efficient Enzymatic Biofuel Cells.
    Fan S; Liang B; Xiao X; Bai L; Tang X; Lojou E; Cosnier S; Liu A
    J Am Chem Soc; 2020 Feb; 142(6):3222-3230. PubMed ID: 31999113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate.
    Yamamoto H; Mitsuhashi K; Kimoto N; Matsuyama A; Esaki N; Kobayashi Y
    Biosci Biotechnol Biochem; 2004 Mar; 68(3):638-49. PubMed ID: 15056898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
    Gand M; Thöle C; Müller H; Brundiek H; Bashiri G; Höhne M
    J Biotechnol; 2016 Jul; 230():11-8. PubMed ID: 27164259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofactor engineering to regulate NAD
    Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M
    Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One step open fermentation for lactic acid production from inedible starchy biomass by thermophilic Bacillus coagulans IPE22.
    Wang Y; Cao W; Luo J; Qi B; Wan Y
    Bioresour Technol; 2019 Jan; 272():398-406. PubMed ID: 30388577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective Biosynthesis of l-Phenyllactic Acid by Whole Cells of Recombinant Escherichia coli.
    Zhu Y; Wang Y; Xu J; Chen J; Wang L; Qi B
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29140277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Efficient biosynthesis of (S)-1-phenyl-1,2-ethanediol catalyzed by (S)-carbonyl reductase Ⅱ and glucose dehydrogenase].
    Jiang J; Zhang R; Zhou X; Li K; Li J; Li Y; Xu Y
    Wei Sheng Wu Xue Bao; 2016 Oct; 56(10):1647-55. PubMed ID: 29741827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [High efficient co-expression of leucine dehydrogenase and glucose dehydrogenase in Escherichia coli].
    Yang X; Mu X; Nie Y; Xu Y
    Wei Sheng Wu Xue Bao; 2016 Nov; 56(11):1709-18. PubMed ID: 29741833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.