BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29322349)

  • 41. Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody.
    Zhang H; Wang H; Liu M; Zhang T; Zhang J; Wang X; Xiang W
    Cytotechnology; 2013 May; 65(3):363-78. PubMed ID: 22907508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid establishment of CHO cell lines producing the anti-hepatocyte growth factor antibody SFN68.
    Song SW; Lee SJ; Kim CY; Han B; Oh JW
    J Microbiol Biotechnol; 2013 Aug; 23(8):1176-84. PubMed ID: 23727793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production.
    Lee YY; Yap MG; Hu WS; Wong KT
    Biotechnol Prog; 2003; 19(2):501-9. PubMed ID: 12675594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rich production media as a platform for CHO cell line development.
    Kim YJ; Han SK; Yoon S; Kim CW
    AMB Express; 2020 May; 10(1):93. PubMed ID: 32415509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform.
    Pacis E; Yu M; Autsen J; Bayer R; Li F
    Biotechnol Bioeng; 2011 Oct; 108(10):2348-58. PubMed ID: 21557201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Demonstration of a robust high cell density transient CHO platform yielding mAb titers of up to 2 g/L without medium exchange.
    Wu R; Kahl DM; Kloberdanz R; Rohilla KJ; Balasubramanian S
    Biotechnol Prog; 2024; 40(3):e3435. PubMed ID: 38329375
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells.
    López-Meza J; Araíz-Hernández D; Carrillo-Cocom LM; López-Pacheco F; Rocha-Pizaña Mdel R; Alvarez MM
    Cytotechnology; 2016 Aug; 68(4):1287-300. PubMed ID: 26091615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fed-batch culture optimization of a growth-associated hybridoma cell line in chemically defined protein-free media.
    Gong X; Li D; Li X; Fang Q; Han X; Wu Y; Yang S; Shen BQ
    Cytotechnology; 2006 Sep; 52(1):25-38. PubMed ID: 19002863
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development.
    Liu Y; Zhang W; Deng X; Poon HF; Liu X; Tan WS; Zhou Y; Fan L
    J Biosci Bioeng; 2015 Dec; 120(6):690-6. PubMed ID: 26183860
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration.
    Webster TA; Hadley BC; Dickson M; Busa JK; Jaques C; Mason C
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):127-140. PubMed ID: 32816075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced recombinant factor VII expression in Chinese hamster ovary cells by optimizing signal peptides and fed-batch medium.
    Peng L; Yu X; Li C; Cai Y; Chen Y; He Y; Yang J; Jin J; Li H
    Bioengineered; 2016 Apr; 7(3):189-97. PubMed ID: 27116572
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures.
    Qin J; Wu X; Xia Z; Huang Z; Zhang Y; Wang Y; Fu Q; Zheng C
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1217-1229. PubMed ID: 30554388
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feed development for fed-batch CHO production process by semisteady state analysis.
    Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ
    Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers.
    Yang WC; Lu J; Nguyen NB; Zhang A; Healy NV; Kshirsagar R; Ryll T; Huang YM
    Mol Biotechnol; 2014 May; 56(5):421-8. PubMed ID: 24381145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines.
    Fan L; Zhao L; Sun Y; Kou T; Zhou Y; Tan WS
    J Microbiol Biotechnol; 2009 Dec; 19(12):1695-702. PubMed ID: 20075639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using MVDA with stoichiometric balances to optimize amino acid concentrations in chemically defined CHO cell culture medium for improved culture performance.
    Salim T; Chauhan G; Templeton N; Ling WLW
    Biotechnol Bioeng; 2022 Feb; 119(2):452-469. PubMed ID: 34811720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells.
    Chiang GG; Sisk WP
    Biotechnol Bioeng; 2005 Sep; 91(7):779-92. PubMed ID: 15986489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell culture medium supplemented with taurine decreases basic charge variant levels of a monoclonal antibody.
    Liu M; Wang J; Tang H; Fan L; Zhao L; Wang HB; Zhou Y; Tan WS
    Biotechnol Lett; 2018 Dec; 40(11-12):1487-1493. PubMed ID: 30229353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies.
    Ritacco FV; Wu Y; Khetan A
    Biotechnol Prog; 2018 Nov; 34(6):1407-1426. PubMed ID: 30290072
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defined protein and animal component-free NS0 fed-batch culture.
    Spens E; Häggström L
    Biotechnol Bioeng; 2007 Dec; 98(6):1183-94. PubMed ID: 17516495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.