BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29322618)

  • 1. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits.
    Kato S; Shibuya T; Takaki Y; Hirai M; Nunoura T; Suzuki K
    Environ Microbiol; 2018 Feb; 20(2):862-877. PubMed ID: 29322618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential for biogeochemical cycling of sulfur, iron and carbon within massive sulfide deposits below the seafloor.
    Kato S; Ikehata K; Shibuya T; Urabe T; Ohkuma M; Yamagishi A
    Environ Microbiol; 2015 May; 17(5):1817-35. PubMed ID: 25330135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Potential of As-yet-uncultured Archaeal Lineages of Candidatus Hydrothermarchaeota Thriving in Deep-sea Metal Sulfide Deposits.
    Kato S; Nakano S; Kouduka M; Hirai M; Suzuki K; Itoh T; Ohkuma M; Suzuki Y
    Microbes Environ; 2019 Sep; 34(3):293-303. PubMed ID: 31378759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
    Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R
    Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses.
    Meier DV; Pjevac P; Bach W; Markert S; Schweder T; Jamieson J; Petersen S; Amann R; Meyerdierks A
    Environ Microbiol; 2019 Feb; 21(2):682-701. PubMed ID: 30585382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.
    Lesniewski RA; Jain S; Anantharaman K; Schloss PD; Dick GJ
    ISME J; 2012 Dec; 6(12):2257-68. PubMed ID: 22695860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments.
    Dombrowski N; Seitz KW; Teske AP; Baker BJ
    Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics.
    Urich T; Lanzén A; Stokke R; Pedersen RB; Bayer C; Thorseth IH; Schleper C; Steen IH; Ovreas L
    Environ Microbiol; 2014 Sep; 16(9):2699-710. PubMed ID: 24112684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys.
    Hou J; Sievert SM; Wang Y; Seewald JS; Natarajan VP; Wang F; Xiao X
    Microbiome; 2020 Jun; 8(1):102. PubMed ID: 32605604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microbiome of Brazilian mangrove sediments as revealed by metagenomics.
    Andreote FD; Jiménez DJ; Chaves D; Dias AC; Luvizotto DM; Dini-Andreote F; Fasanella CC; Lopez MV; Baena S; Taketani RG; de Melo IS
    PLoS One; 2012; 7(6):e38600. PubMed ID: 22737213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast.
    Canfield DE; Stewart FJ; Thamdrup B; De Brabandere L; Dalsgaard T; Delong EF; Revsbech NP; Ulloa O
    Science; 2010 Dec; 330(6009):1375-8. PubMed ID: 21071631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
    Dekas AE; Poretsky RS; Orphan VJ
    Science; 2009 Oct; 326(5951):422-6. PubMed ID: 19833965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea).
    Pop Ristova P; Wenzhöfer F; Ramette A; Felden J; Boetius A
    ISME J; 2015 Jun; 9(6):1306-18. PubMed ID: 25500510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan).
    Koizumi Y; Kojima H; Fukui M
    FEMS Microbiol Ecol; 2005 May; 52(3):297-305. PubMed ID: 16329915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics.
    Sheik CS; Jain S; Dick GJ
    Environ Microbiol; 2014 Jan; 16(1):304-17. PubMed ID: 23809230
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Callbeck CM; Pelzer C; Lavik G; Ferdelman TG; Graf JS; Vekeman B; Schunck H; Littmann S; Fuchs BM; Hach PF; Kalvelage T; Schmitz RA; Kuypers MMM
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31585991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional diversity of microbial communities in inactive seafloor sulfide deposits.
    Dong X; Zhang C; Li W; Weng S; Song W; Li J; Wang Y
    FEMS Microbiol Ecol; 2021 Aug; 97(8):. PubMed ID: 34302348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments.
    Tully BJ; Heidelberg JF
    Appl Environ Microbiol; 2016 Jul; 82(14):4232-43. PubMed ID: 27208118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids.
    Fortunato CS; Larson B; Butterfield DA; Huber JA
    Environ Microbiol; 2018 Feb; 20(2):769-784. PubMed ID: 29205750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system.
    Inagaki F; Kuypers MM; Tsunogai U; Ishibashi J; Nakamura K; Treude T; Ohkubo S; Nakaseama M; Gena K; Chiba H; Hirayama H; Nunoura T; Takai K; Jørgensen BB; Horikoshi K; Boetius A
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14164-9. PubMed ID: 16959888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.