These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29322733)

  • 1. [Blue death of nematodes.].
    Gagarinskyi EL; Vekshin NL
    Adv Gerontol; 2017; 30(5):676-684. PubMed ID: 29322733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of a corn (Zea mays L.) mutant (blue fluorescent-1) which accumulates anthranilic acid and its beta-glucoside.
    Singh M; Widholm JM
    Biochem Genet; 1975 Jun; 13(5-6):357-67. PubMed ID: 1180876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans.
    Coburn C; Allman E; Mahanti P; Benedetto A; Cabreiro F; Pincus Z; Matthijssens F; Araiz C; Mandel A; Vlachos M; Edwards SA; Fischer G; Davidson A; Pryor RE; Stevens A; Slack FJ; Tavernarakis N; Braeckman BP; Schroeder FC; Nehrke K; Gems D
    PLoS Biol; 2013 Jul; 11(7):e1001613. PubMed ID: 23935448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human plasma lipofuscin melanins formed from tryptophan metabolites.
    Hegedus ZL; Frank HA; Altschule MD; Nayak U
    Arch Int Physiol Biochim; 1986 Dec; 94(5):339-48. PubMed ID: 2440410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lipofuscin and mitolipofuscin in organs of young and adult rats.].
    Chaplygina AV; Vekshin NL
    Adv Gerontol; 2018; 31(2):197-202. PubMed ID: 30080326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of [1-15N] L-tryptophan from 15N labeled anthranilic acid by fermentation of Candida utilis mutant.
    Liu Z; Yuan Q; Wang W
    Amino Acids; 2009 Jan; 36(1):71-3. PubMed ID: 18235989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile strategy to synthesize
    Bertin-Jung I; Robert A; Ramalanjaona N; Gulberti S; Bui C; Vincourt JB; Ouzzine M; Jacquinet JC; Lopin-Bon C; Fournel-Gigleux S
    Chem Commun (Camb); 2020 Sep; 56(73):10746-10749. PubMed ID: 32789356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The secret(ion) life of worms.
    Bird DM; Opperman CH
    Genome Biol; 2009; 10(1):205. PubMed ID: 19226434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluorometric and fluorometric lipofuscin spectral discrepancies: a concentration-dependent metachromatic effect?
    Yin DZ; Brunk UT
    Mech Ageing Dev; 1991 Jun; 59(1-2):95-109. PubMed ID: 1890889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cuticle surface coat of plant-parasitic nematodes.
    Davies KG; Curtis RH
    Annu Rev Phytopathol; 2011; 49():135-56. PubMed ID: 21568702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of the extraction methods and re-evaluation of blue fluorescence generated in rat tissues in situ.
    Kikugawa K; Kato T; Yamaki S; Kasai H
    Biol Pharm Bull; 1994 Jan; 17(1):9-15. PubMed ID: 8148822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MSP domain proteins.
    Tarr DE; Scott AL
    Trends Parasitol; 2005 May; 21(5):224-31. PubMed ID: 15837611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Degradation of Mitochondria to Lipofuscin upon Heating and Illumination].
    Frolova MS; Surin AM; Braslavski AV; Vekshin NL
    Biofizika; 2015; 60(6):1125-31. PubMed ID: 26841506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of fluorescent adducts of malondialdehyde and amino acids: toward an understanding of lipofuscin.
    Chowdhury PK; Halder M; Choudhury PK; Kraus GA; Desai MJ; Armstrong DW; Casey TA; Rasmussen MA; Petrich JW
    Photochem Photobiol; 2004 Jan; 79(1):21-5. PubMed ID: 14974711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds.
    Schörghuber J; Geist L; Bisaccia M; Weber F; Konrat R; Lichtenecker RJ
    J Biomol NMR; 2017 Sep; 69(1):13-22. PubMed ID: 28861670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spectroscopic study of substituted anthranilic acids as sensitive environmental probes for detecting cancer cells.
    Culf AS; Yin H; Monro S; Ghosh A; Barnett DA; Ouellette RJ; Čuperlović-Culf M; McFarland SA
    Bioorg Med Chem; 2016 Mar; 24(5):929-37. PubMed ID: 26810709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes.
    Wu S; Lu J; Rui Q; Yu S; Cai T; Wang D
    Environ Toxicol Pharmacol; 2011 Jan; 31(1):179-88. PubMed ID: 21787684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some observations on the fluorescence analysis of anthranilic acid.
    SANDERS PP; PARKS LW
    Anal Biochem; 1962 Apr; 3():354-6. PubMed ID: 14496825
    [No Abstract]   [Full Text] [Related]  

  • 19. The concentration of anthranilic acid in saliva of orthodontic appliances.
    Tankiewicz A; Buczko P; Szarmach IJ; Kasacka I; Pawlak D
    Adv Med Sci; 2006; 51 Suppl 1():31-3. PubMed ID: 17460830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ estimation of the entire color and spectra of age pigment-like materials: application of a front-surface 3D-fluorescence technique.
    Li G; Liao Y; Wang X; Sheng S; Yin D
    Exp Gerontol; 2006 Mar; 41(3):328-36. PubMed ID: 16480845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.