BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29322780)

  • 1. Signal and Noise in FET-Nanopore Devices.
    Parkin WM; Drndić M
    ACS Sens; 2018 Feb; 3(2):313-319. PubMed ID: 29322780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths.
    Balan A; Machielse B; Niedzwiecki D; Lin J; Ong P; Engelke R; Shepard KL; Drndić M
    Nano Lett; 2014 Dec; 14(12):7215-20. PubMed ID: 25418589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene nanopore devices for DNA sensing.
    Merchant CA; Drndić M
    Methods Mol Biol; 2012; 870():211-26. PubMed ID: 22528266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection.
    Puster M; Balan A; Rodríguez-Manzo JA; Danda G; Ahn JH; Parkin W; Drndić M
    Small; 2015 Dec; 11(47):6309-16. PubMed ID: 26500023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local electrical potential detection of DNA by nanowire-nanopore sensors.
    Xie P; Xiong Q; Fang Y; Qing Q; Lieber CM
    Nat Nanotechnol; 2011 Dec; 7(2):119-25. PubMed ID: 22157724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing.
    Hsu CL; Jiang H; Venkatesh AG; Hall DA
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):652-61. PubMed ID: 26595927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Side-gated ultrathin-channel nanopore FET sensors.
    Yanagi I; Oura T; Haga T; Ando M; Yamamoto J; Mine T; Ishida T; Hatano T; Akahori R; Yokoi T; Anazawa T
    Nanotechnology; 2016 Mar; 27(11):115501. PubMed ID: 26876025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On nanopore DNA sequencing by signal and noise analysis of ionic current.
    Wen C; Zeng S; Zhang Z; Hjort K; Scheicher R; Zhang SL
    Nanotechnology; 2016 May; 27(21):215502. PubMed ID: 27095148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise and its reduction in graphene based nanopore devices.
    Kumar A; Park KB; Kim HM; Kim KB
    Nanotechnology; 2013 Dec; 24(49):495503. PubMed ID: 24240186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transverse Detection of DNA Using a MoS
    Graf M; Lihter M; Altus D; Marion S; Radenovic A
    Nano Lett; 2019 Dec; 19(12):9075-9083. PubMed ID: 31710497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore.
    Heerema SJ; Vicarelli L; Pud S; Schouten RN; Zandbergen HW; Dekker C
    ACS Nano; 2018 Mar; 12(3):2623-2633. PubMed ID: 29474060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA base detection using a single-layer MoS2.
    Farimani AB; Min K; Aluru NR
    ACS Nano; 2014 Aug; 8(8):7914-22. PubMed ID: 25007098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized Noise Study of Solid-State Nanopores at Low Frequencies.
    Wen C; Zeng S; Arstila K; Sajavaara T; Zhu Y; Zhang Z; Zhang SL
    ACS Sens; 2017 Feb; 2(2):300-307. PubMed ID: 28723146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive and electrically actuated solid-state nanopores for sensing and manipulating DNA.
    Jiang Z; Mihovilovic M; Teich E; Stein D
    Methods Mol Biol; 2012; 870():241-64. PubMed ID: 22528268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting the translocation of DNA through a nanopore using graphene nanoribbons.
    Traversi F; Raillon C; Benameur SM; Liu K; Khlybov S; Tosun M; Krasnozhon D; Kis A; Radenovic A
    Nat Nanotechnol; 2013 Dec; 8(12):939-45. PubMed ID: 24240429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.
    Fuller CW; Kumar S; Porel M; Chien M; Bibillo A; Stranges PB; Dorwart M; Tao C; Li Z; Guo W; Shi S; Korenblum D; Trans A; Aguirre A; Liu E; Harada ET; Pollard J; Bhat A; Cech C; Yang A; Arnold C; Palla M; Hovis J; Chen R; Morozova I; Kalachikov S; Russo JJ; Kasianowicz JJ; Davis R; Roever S; Church GM; Ju J
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5233-8. PubMed ID: 27091962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast DNA sequencing with a graphene-based nanochannel device.
    Min SK; Kim WY; Cho Y; Kim KS
    Nat Nanotechnol; 2011 Mar; 6(3):162-5. PubMed ID: 21297626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Principles of DNA-Barcodes for Nanopore-FET Readout, Based on Molecular Dynamics and TCAD Simulations.
    Voorspoels A; Gevers J; Santermans S; Akkan N; Martens K; Willems K; Van Dorpe P; Verhulst AS
    J Phys Chem A; 2024 May; 128(19):3926-3933. PubMed ID: 38712508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.