BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29323135)

  • 1. Peptide-based coatings for flexible implantable neural interfaces.
    Righi M; Puleo GL; Tonazzini I; Giudetti G; Cecchini M; Micera S
    Sci Rep; 2018 Jan; 8(1):502. PubMed ID: 29323135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary investigations on laminin coatings for flexible polyimide/platinum thin films for PNS applications.
    Bossi S; Benvenuto A; Wieringa P; Di Pino G; Guglielmelli E; Boretius T; Stieglitz T; Navarro X; Micera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1527-30. PubMed ID: 21096373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring.
    Sridar S; Churchward MA; Mushahwar VK; Todd KG; Elias AL
    Acta Biomater; 2017 Sep; 60():154-166. PubMed ID: 28735029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell attachment functionality of bioactive conducting polymers for neural interfaces.
    Green RA; Lovell NH; Poole-Warren LA
    Biomaterials; 2009 Aug; 30(22):3637-44. PubMed ID: 19375160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A technique for preparing protein gradients on polymeric surfaces: effects on PC12 pheochromocytoma cells.
    Li B; Ma Y; Wang S; Moran PM
    Biomaterials; 2005 May; 26(13):1487-95. PubMed ID: 15522750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofunctionalization of PEDOT films with laminin-derived peptides.
    Bhagwat N; Murray RE; Shah SI; Kiick KL; Martin DC
    Acta Biomater; 2016 Sep; 41():235-46. PubMed ID: 27181880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented Schwann cell monolayers for directed neurite outgrowth.
    Thompson DM; Buettner HM
    Ann Biomed Eng; 2004 Aug; 32(8):1120-30. PubMed ID: 15446508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation.
    Wang J; Tian L; Chen N; Ramakrishna S; Mo X
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible and Highly Biocompatible Nanofiber-Based Electrodes for Neural Surface Interfacing.
    Heo DN; Kim HJ; Lee YJ; Heo M; Lee SJ; Lee D; Do SH; Lee SH; Kwon IK
    ACS Nano; 2017 Mar; 11(3):2961-2971. PubMed ID: 28196320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of the conducting polymer, polypyrrole, via affinity peptide.
    Nickels JD; Schmidt CE
    J Biomed Mater Res A; 2013 May; 101(5):1464-71. PubMed ID: 23129217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of glassy carbon surfaces with synthetic laminin-derived peptides for nerve cell attachment and neurite growth.
    Huber M; Heiduschka P; Kienle S; Pavlidis C; Mack J; Walk T; Jung G; Thanos S
    J Biomed Mater Res; 1998 Aug; 41(2):278-88. PubMed ID: 9638533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications.
    Santiago LY; Nowak RW; Peter Rubin J; Marra KG
    Biomaterials; 2006 May; 27(15):2962-9. PubMed ID: 16445976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization.
    Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT
    Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes.
    Gutowski SM; Shoemaker JT; Templeman KL; Wei Y; Latour RA; Bellamkonda RV; LaPlaca MC; García AJ
    Biomaterials; 2015 Mar; 44():55-70. PubMed ID: 25617126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer films assembled from natural polymers for sustained release of neurotrophin.
    Zhang Z; Li Q; Han L; Zhong Y
    Biomed Mater; 2015 Sep; 10(5):055006. PubMed ID: 26358683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved polyimide thin-film electrodes for neural implants.
    Ordonez JS; Boehler C; Schuettler M; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5134-7. PubMed ID: 23367084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface.
    Lu Y; Wang D; Li T; Zhao X; Cao Y; Yang H; Duan YY
    Biomaterials; 2009 Sep; 30(25):4143-51. PubMed ID: 19467702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.
    Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C
    Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductive hydrogels with tailored bioactivity for implantable electrode coatings.
    Mario Cheong GL; Lim KS; Jakubowicz A; Martens PJ; Poole-Warren LA; Green RA
    Acta Biomater; 2014 Mar; 10(3):1216-26. PubMed ID: 24365707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Hydrogel Zwitterionic Coatings Minimize Fibroblast and Macrophage Adhesion on Polyimide Substrates.
    Trel'ová D; Salgarella AR; Ricotti L; Giudetti G; Cutrone A; Šrámková P; Zahoranová A; Chorvát D; Haško D; Canale C; Micera S; Kronek J; Menciassi A; Lacík I
    Langmuir; 2019 Feb; 35(5):1085-1099. PubMed ID: 29792034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.