These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29323149)

  • 1. Winner-take-all in a phase oscillator system with adaptation.
    Burylko O; Kazanovich Y; Borisyuk R
    Sci Rep; 2018 Jan; 8(1):416. PubMed ID: 29323149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative dynamics in coupled systems of fast and slow phase oscillators.
    Sakaguchi H; Okita T
    Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex dynamics in adaptive phase oscillator networks.
    Jüttner B; Martens EA
    Chaos; 2023 May; 33(5):. PubMed ID: 37133924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of neural networks with a central element.
    Kazanovich YB; Borisyuk RM
    Neural Netw; 1999 Apr; 12(3):441-454. PubMed ID: 12662687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation.
    Ermentrout GB; Glass L; Oldeman BE
    Neural Comput; 2012 Dec; 24(12):3111-25. PubMed ID: 22970869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative changes in phase-response curve and synchronization at the saddle-node-loop bifurcation.
    Hesse J; Schleimer JH; Schreiber S
    Phys Rev E; 2017 May; 95(5-1):052203. PubMed ID: 28618541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators.
    Ha SY; Lee J; Li Z
    Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation study of phase oscillator systems with attractive and repulsive interaction.
    Burylko O; Kazanovich Y; Borisyuk R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022911. PubMed ID: 25215803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions.
    Sharma A; Rajwani P; Jalan S
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction times in visual search can be explained by a simple model of neural synchronization.
    Kazanovich Y; Borisyuk R
    Neural Netw; 2017 Mar; 87():1-7. PubMed ID: 28039779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter.
    Chen B; Engelbrecht JR; Mirollo R
    Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kuramoto dynamics in Hamiltonian systems.
    Witthaut D; Timme M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032917. PubMed ID: 25314514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability diagram for the forced Kuramoto model.
    Childs LM; Strogatz SH
    Chaos; 2008 Dec; 18(4):043128. PubMed ID: 19123638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transitions in an adaptive network with the global order parameter adaptation.
    Manoranjani M; Saiprasad VR; Gopal R; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Oct; 108(4-1):044307. PubMed ID: 37978685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary mixtures of locally coupled mobile oscillators.
    Paulo G; Tasinkevych M
    Phys Rev E; 2021 Jul; 104(1-1):014204. PubMed ID: 34412317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056210. PubMed ID: 23004846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies.
    Gao J; Efstathiou K
    Phys Rev E; 2020 Feb; 101(2-1):022302. PubMed ID: 32168684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.