BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 29323173)

  • 21. Electroporation-Mediated CRISPR/Cas9 Genome Editing in Rat Zygotes.
    Davis DJ; Men H; Bryda EC
    Methods Mol Biol; 2023; 2631():267-276. PubMed ID: 36995672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse.
    Hashimoto M; Yamashita Y; Takemoto T
    Dev Biol; 2016 Oct; 418(1):1-9. PubMed ID: 27474397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous Gene Excision and Integration by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():69-83. PubMed ID: 33847982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Point Mutant and Epitope-Tagged Alleles in Mice Using Cas9 RNA-Guided Nuclease.
    Gertsenstein M; Nutter LMJ
    Curr Protoc Mouse Biol; 2018 Mar; 8(1):28-53. PubMed ID: 30040228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electroporation-mediated genome editing in vitrified/warmed mouse zygotes created by IVF via ultra-superovulation.
    Nakagawa Y; Sakuma T; Takeo T; Nakagata N; Yamamoto T
    Exp Anim; 2018 Nov; 67(4):535-543. PubMed ID: 30012936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes.
    Alghadban S; Bouchareb A; Hinch R; Hernandez-Pliego P; Biggs D; Preece C; Davies B
    Sci Rep; 2020 Oct; 10(1):17912. PubMed ID: 33087834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zygote Electroporation for CRISPR/Cas9 Delivery to Generate Genetically Modified Mice.
    Takemoto T
    Methods Mol Biol; 2020; 2050():121-126. PubMed ID: 31468486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of CRISPR/Cas9 system and the preferred no-indel end-joining repair in tardigrades.
    Kumagai H; Kondo K; Kunieda T
    Biochem Biophys Res Commun; 2022 Oct; 623():196-201. PubMed ID: 35926276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs.
    Hirata M; Wittayarat M; Tanihara F; Sato Y; Namula Z; Le QA; Lin Q; Takebayashi K; Otoi T
    In Vitro Cell Dev Biol Anim; 2020 Sep; 56(8):614-621. PubMed ID: 32978715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
    Bloomer H; Smith RH; Hakami W; Larochelle A
    Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical Modification of Guide RNAs for Improved CRISPR Activity in CD34+ Human Hematopoietic Stem and Progenitor Cells.
    Shapiro J; Tovin A; Iancu O; Allen D; Hendel A
    Methods Mol Biol; 2021; 2162():37-48. PubMed ID: 32926376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats.
    Takabayashi S; Aoshima T; Kabashima K; Aoto K; Ohtsuka M; Sato M
    Sci Rep; 2018 Aug; 8(1):12059. PubMed ID: 30104681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient and Fast Generation of Relevant Disease Mouse Models by
    Sanchez-Baltasar R; Garcia-Torralba A; Nieto-Romero V; Page A; Molinos-Vicente A; López-Manzaneda S; Ojeda-Pérez I; Ramirez A; Navarro M; Segovia JC; García-Bravo M
    CRISPR J; 2022 Jun; 5(3):422-434. PubMed ID: 35686982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An oocyte-specific Cas9-expressing mouse for germline CRISPR/Cas9-mediated genome editing.
    Lanza DG; Mao J; Lorenzo I; Liao L; Seavitt JR; Ljungberg MC; Simpson EM; DeMayo FJ; Heaney JD
    Genesis; 2024 Apr; 62(2):e23589. PubMed ID: 38523431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient mouse genome engineering by CRISPR-EZ technology.
    Modzelewski AJ; Chen S; Willis BJ; Lloyd KCK; Wood JA; He L
    Nat Protoc; 2018 Jun; 13(6):1253-1274. PubMed ID: 29748649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of knockout mouse lines with Cas9.
    Gertsenstein M; Nutter LMJ
    Methods; 2021 Jul; 191():32-43. PubMed ID: 33524495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.