These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29323229)

  • 1. Facile synthesis of TiO
    Yasin AS; Mohamed IMA; Mousa HM; Park CH; Kim CS
    Sci Rep; 2018 Jan; 8(1):541. PubMed ID: 29323229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.
    Dong Q; Wang G; Wu T; Peng S; Qiu J
    J Colloid Interface Sci; 2015 May; 446():373-8. PubMed ID: 25595622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water.
    Feng C; Chen YA; Yu CP; Hou CH
    Chemosphere; 2018 Oct; 208():285-293. PubMed ID: 29883863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency Enhancement of Electro-Adsorption Desalination Using Iron Oxide Nanoparticle-Incorporated Activated Carbon Nanocomposite.
    Yasin AS; Mohamed AY; Kim D; Yoon S; Ra H; Lee K
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance.
    Xu X; Sun Z; Chua DH; Pan L
    Sci Rep; 2015 Jun; 5():11225. PubMed ID: 26063676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization.
    Zhang W; Jin C; Shi Z; Zhu L; Chen L; Liu Y; Zhang H
    Chemosphere; 2022 Mar; 291(Pt 3):133113. PubMed ID: 34856237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Characterization of Activated Carbon Co-Mixed Electrospun Titanium Oxide Nanofibers as Flow Electrode in Capacitive Deionization.
    Folaranmi G; Tauk M; Bechelany M; Sistat P; Cretin M; Zaviska F
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent.
    Hwang SH; Song J; Jung Y; Kweon OY; Song H; Jang J
    Chem Commun (Camb); 2011 Aug; 47(32):9164-6. PubMed ID: 21761035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitative deionization using commercial activated carbon fiber decorated with polyaniline.
    Tian S; Zhang Z; Zhang X; Ken Ostrikov K
    J Colloid Interface Sci; 2019 Mar; 537():247-255. PubMed ID: 30448645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of novel graphene sponge for high performance capacitive deionization.
    Xu X; Pan L; Liu Y; Lu T; Sun Z; Chua DH
    Sci Rep; 2015 Feb; 5():8458. PubMed ID: 25675835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization.
    Zhang J; Ning XA; Li D; Wang Y; Lai X; Ou W
    J Environ Sci (China); 2022 Jan; 111():282-291. PubMed ID: 34949358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical MXene/Polypyrrole-Decorated Carbon Nanofibers for Asymmetrical Capacitive Deionization.
    Wang XR; Wang X; Nian HE; Chen T; Zhang L; Song S; Li JH; Wang Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53150-53164. PubMed ID: 36394639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe
    Bharath G; Rambabu K; Banat F; Hai A; Arangadi AF; Ponpandian N
    Sci Total Environ; 2019 Nov; 691():713-726. PubMed ID: 31325869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge and Potential Balancing for Optimized Capacitive Deionization Using Lignin-Derived, Low-Cost Activated Carbon Electrodes.
    Zornitta RL; Srimuk P; Lee J; Krüner B; Aslan M; Ruotolo LAM; Presser V
    ChemSusChem; 2018 Jul; 11(13):2101-2113. PubMed ID: 29710382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization.
    El-Deen AG; Boom RM; Kim HY; Duan H; Chan-Park MB; Choi JH
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25313-25. PubMed ID: 27589373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A binder free hierarchical mixed capacitive deionization electrode based on a polyoxometalate and polypyrrole for brackish water desalination.
    Liu N; Zhang Y; Xu X; Wang Y
    Dalton Trans; 2020 May; 49(19):6321-6327. PubMed ID: 32342067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudocapacitive Coating for Effective Capacitive Deionization.
    Li M; Park HG
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2442-2450. PubMed ID: 29272105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination.
    Liu H; Zhang J; Xu X; Wang Q
    Chemistry; 2020 Apr; 26(19):4403-4409. PubMed ID: 32017296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.