These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29323229)

  • 21. Disinfection of Bacteria in Water by Capacitive Deionization.
    Laxman K; Sathe P; Al Abri M; Dobretsov S; Dutta J
    Front Chem; 2020; 8():774. PubMed ID: 33110910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of self-supporting ultra-micropores lignin-based carbon nanofibers with high areal desalination capacity.
    Yin L; Hu P; Liang C; Wang J; Li M; Qu W
    Int J Biol Macromol; 2023 Jan; 225():1415-1425. PubMed ID: 36435463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization.
    Min X; Hu X; Li X; Wang H; Yang W
    J Colloid Interface Sci; 2019 Aug; 550():147-158. PubMed ID: 31063873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.
    Li H; Gao Y; Pan L; Zhang Y; Chen Y; Sun Z
    Water Res; 2008 Dec; 42(20):4923-8. PubMed ID: 18929385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced capacitive deionization properties of activated carbon doped with carbon nanotube-bridged molybdenum disulfide.
    Sun J; Li Y; Song H; Li H; Lai Q; Egabaierdi G; Li Q; Zhang S; He H; Li A
    Chemosphere; 2023 Jan; 310():136740. PubMed ID: 36209852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of polyvinylidene fluoride-derived porous carbon heterostructure with inserted carbon nanotube via phase-inversion coupled with annealing for capacitive deionization application.
    Li Y; Qi J; Zhang W; Zhang M; Li J
    J Colloid Interface Sci; 2019 Oct; 554():353-361. PubMed ID: 31310877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe
    Pant B; Pant HR; Park M
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32121021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization.
    Hussain T; Wang Y; Xiong Z; Yang J; Xie Z; Liu J
    J Colloid Interface Sci; 2018 Dec; 532():343-351. PubMed ID: 30096528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method.
    Liu PI; Chung LC; Ho CH; Shao H; Liang TM; Horng RY; Chang MC; Ma CC
    J Colloid Interface Sci; 2015 May; 446():352-8. PubMed ID: 25576198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of porous graphene electrodes via CO
    Zhang Y; Chen L; Mao S; Sun Z; Song Y; Zhao R
    J Colloid Interface Sci; 2019 Feb; 536():252-260. PubMed ID: 30368097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and Mechanism of Cu-Decorated TiO2-ZrO2 Films Showing Accelerated Bacterial Inactivation.
    Rtimi S; Pulgarin C; Sanjines R; Nadtochenko V; Lavanchy JC; Kiwi J
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12832-9. PubMed ID: 26023896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capacitive deionization performance of asymmetric nanoengineered CoFe
    Younes H; Rahman MM; Hong H; AlNahyan M; Ravaux F
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):32539-32549. PubMed ID: 36469268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-Co
    Hu X; Min X; Li X; Si M; Liu L; Zheng J; Yang W; Zhao F
    J Colloid Interface Sci; 2022 Jun; 616():389-400. PubMed ID: 35228044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capacitive Deionization using Biomass-based Microporous Salt-Templated Heteroatom-Doped Carbons.
    Porada S; Schipper F; Aslan M; Antonietti M; Presser V; Fellinger TP
    ChemSusChem; 2015 Jun; 8(11):1867-74. PubMed ID: 25970654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO
    Jia L; Huang X; Liang H; Tao Q
    Int J Biol Macromol; 2019 Jul; 132():1039-1043. PubMed ID: 30926506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement in capacitive deionization function of activated carbon cloth by titania modification.
    Ryoo MW; Seo G
    Water Res; 2003 Apr; 37(7):1527-34. PubMed ID: 12600380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cu-based MOF-derived architecture with Cu/Cu
    Zhu G; Chen L; Lu T; Zhang L; Hossain MSA; Amin MA; Yamauchi Y; Li Y; Xu X; Pan L
    Environ Res; 2022 Jul; 210():112909. PubMed ID: 35157915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.