These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29323250)

  • 1. A biofilm and organomineralisation model for the growth and limiting size of ooids.
    Batchelor MT; Burne RV; Henry BI; Li F; Paul J
    Sci Rep; 2018 Jan; 8(1):559. PubMed ID: 29323250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, The Bahamas.
    O'Reilly SS; Mariotti G; Winter AR; Newman SA; Matys ED; McDermott F; Pruss SB; Bosak T; Summons RE; Klepac-Ceraj V
    Geobiology; 2017 Jan; 15(1):112-130. PubMed ID: 27378151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbially influenced formation of Neoarchean ooids.
    Flannery DT; Allwood AC; Hodyss R; Summons RE; Tuite M; Walter MR; Williford KH
    Geobiology; 2019 Mar; 17(2):151-160. PubMed ID: 30450841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Formation and Distribution of Modern Ooids on Great Bahama Bank.
    Harris PM; Diaz MR; Eberli GP
    Ann Rev Mar Sci; 2019 Jan; 11():491-516. PubMed ID: 30089226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids.
    Sumner DY; Grotzinger JP
    J Sediment Petrol; 1993 Sep; 63(5):974-82. PubMed ID: 11539432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonate ooids of the Mesoarchaean Pongola Supergroup, South Africa.
    Siahi M; Hofmann A; Master S; Mueller CW; Gerdes A
    Geobiology; 2017 Nov; 15(6):750-766. PubMed ID: 28737010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic-rich bimineralic ooids record biological processes in Shark Bay, Western Australia.
    Ramey-Lariviere JYF; Gong J; Baldes MJ; Chatterjee N; Bosak T; Pruss SB
    Geobiology; 2023 Sep; 21(5):629-643. PubMed ID: 37226324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modern Iron Ooids of Hydrothermal Origin as a Proxy for Ancient Deposits.
    Di Bella M; Sabatino G; Quartieri S; Ferretti A; Cavalazzi B; Barbieri R; Foucher F; Messori F; Italiano F
    Sci Rep; 2019 May; 9(1):7107. PubMed ID: 31068615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora.
    Summons RE; Bird LR; Gillespie AL; Pruss SB; Roberts M; Sessions AL
    Geobiology; 2013 Sep; 11(5):420-36. PubMed ID: 23790232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using geographical information techniques to quantify the spatial structure of endolithic boring processes within sediment grains of marine stromatolites.
    Petrisor AI; Decho AW
    J Microbiol Methods; 2004 Feb; 56(2):173-80. PubMed ID: 14744446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure.
    Ancion PY; Lear G; Dopheide A; Lewis GD
    Environ Pollut; 2013 Feb; 173():117-24. PubMed ID: 23202641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles.
    Zhang H; Voss KJ
    Opt Express; 2009 Mar; 17(7):5217-31. PubMed ID: 19333285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory investigation of the effects of mineral size and concentration on the formation of oil-mineral aggregates.
    Ajijolaiya LO; Hill PS; Khelifa A; Islam RM; Lee K
    Mar Pollut Bull; 2006 Aug; 52(8):920-7. PubMed ID: 16466748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of a biofilm on solute diffusion in fractured porous media.
    Charbonneau A; Novakowski K; Ross N
    J Contam Hydrol; 2006 May; 85(3-4):212-28. PubMed ID: 16564602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term persistence of a nutrient-starved biofilm in a limestone fracture.
    Castegnier F; Ross N; Chapuis RP; Deschênes L; Samson R
    Water Res; 2006 Mar; 40(5):925-34. PubMed ID: 16494922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas.
    Edgcomb VP; Bernhard JM; Beaudoin D; Pruss S; Welander PV; Schubotz F; Mehay S; Gillespie AL; Summons RE
    Geobiology; 2013 May; 11(3):234-51. PubMed ID: 23398981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm in the sediment phase of a sanitary gravity sewer.
    Chen GH; Leung DH; Hung JC
    Water Res; 2003 Jun; 37(11):2784-8. PubMed ID: 12753857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm formation and potential for iron cycling in serpentinization-influenced groundwater of the Zambales and Coast Range ophiolites.
    Meyer-Dombard DR; Casar CP; Simon AG; Cardace D; Schrenk MO; Arcilla CA
    Extremophiles; 2018 May; 22(3):407-431. PubMed ID: 29450709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial indicators in natural biofilms developed in the riverbed.
    Hirotani H; Yoshino M
    Water Sci Technol; 2010; 62(5):1149-53. PubMed ID: 20818058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites.
    Allwood AC; Burch IW; Rouchy JM; Coleman M
    Astrobiology; 2013 Sep; 13(9):870-86. PubMed ID: 24047112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.