BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 29323386)

  • 1. Sensitive and high laser damage threshold substrates for surface-enhanced Raman scattering based on gold and silver nanoparticles.
    Mayr F; Zimmerleiter R; Farias PMA; Bednorz M; Salinas Y; Galembek A; Cardozo ODF; Wielend D; Oliveira D; Milani R; Brito-Silva TM; Brandstetter M; Padrón-Hernández E; Burgholzer P; Stingl A; Scharber MC; Sariciftci NS
    Anal Sci Adv; 2023 Dec; 4(11-12):335-346. PubMed ID: 38715649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SARS-CoV-2 Receptor Binding Domain as a Stable-Potential Target for SARS-CoV-2 Detection by Surface-Enhanced Raman Spectroscopy.
    Awada C; Abdullah MMB; Traboulsi H; Dab C; Alshoaibi A
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of hexagonally patterned flower-like silver particle arrays as surface-enhanced Raman scattering substrates.
    Tang H; Zheng P; Meng G; Li Z; Zhu C; Han F; Ke Y; Wang Z; Zhou F; Wu N
    Nanotechnology; 2016 Aug; 27(32):325303. PubMed ID: 27363662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary Optimized, Monocrystalline Gold Double Wire Gratings as a Novel SERS Sensing Platform.
    Sweedan AO; Pavan MJ; Schatz E; Maaß H; Tsega A; Tzin V; Höflich K; Mörk P; Feichtner T; Bashouti MY
    Small; 2024 Mar; ():e2311937. PubMed ID: 38529743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the Duty Cycle of Flower-like Silver Nanostructures Fabricated with a Lyotropic Liquid Crystal on the SERS Spectrum.
    Zhang S; Jiang Z; Liang Y; Shen Y; Mao H; Sun H; Zhao X; Li X; Hu W; Xu G; Cao Z
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosensing Using SERS Active Gold Nanostructures.
    Das GM; Managò S; Mangini M; De Luca AC
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices.
    Caridad JM; Winters S; McCloskey D; Duesberg GS; Donegan JF; Krstić V
    Sci Rep; 2017 Mar; 7():45548. PubMed ID: 28358022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale controlled fabrication of highly roughened flower-like silver nanostructures in liquid crystalline phase.
    Yang C; Xiang X; Zhang Y; Peng Z; Cao Z; Wang J; Xuan L
    Sci Rep; 2015 Jul; 5():12355. PubMed ID: 26216669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical nanomaterial-based detection of biomarkers in liquid biopsy.
    Kim YJ; Rho WY; Park SM; Jun BH
    J Hematol Oncol; 2024 Mar; 17(1):10. PubMed ID: 38486294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive and Reliable microRNA Detection with a Recyclable Microfluidic Device and an Easily Assembled SERS Substrate.
    Lee T; Kwon S; Choi HJ; Lim H; Lee J
    ACS Omega; 2021 Aug; 6(30):19656-19664. PubMed ID: 34368553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology in emerging liquid biopsy applications.
    Kalogianni DP
    Nano Converg; 2021 May; 8(1):13. PubMed ID: 33934252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Surface-Enhanced Raman Scattering (SERS)-Based Surface-Corrugated Nanopillars for Biomolecular Detection of Colorectal Cancer.
    Chen KH; Pan MJ; Jargalsaikhan Z; Ishdorj TO; Tseng FG
    Biosensors (Basel); 2020 Oct; 10(11):. PubMed ID: 33142781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane.
    Lee K; Kang JH; Kim HM; Ahn J; Lim H; Lee J; Jeon WJ; Lee JH; Kim KB
    Nano Converg; 2020 Jan; 7(1):1. PubMed ID: 31930443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avenues Toward microRNA Detection
    Zhu CS; Zhu L; Tan DA; Qiu XY; Liu CY; Xie SS; Zhu LY
    Comput Struct Biotechnol J; 2019; 17():904-916. PubMed ID: 31346383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates.
    Qi Q; Liu C; Liu L; Meng Q; Wei S; Ming A; Zhang J; Wang Y; Wu L; Zhu X; Wei F; Yan J
    Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31035552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis.
    Lee T; Jung S; Kwon S; Kim W; Park J; Lim H; Lee J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-Mediated Electroless Deposition of Gold Nanoparticles for Highly Uniform and Efficient SERS Enhancement.
    Tang J; Ou Q; Zhou H; Qi L; Man S
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls.
    Lee T; Wi JS; Oh A; Na HK; Lee J; Lee K; Lee TG; Haam S
    Nanoscale; 2018 Feb; 10(8):3680-3687. PubMed ID: 29323386
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.