These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29323399)

  • 1. [Usability and acceptability of portable exoskeletons for gait training in subjects with spinal cord injury: a systematic review].
    Mardomingo-Medialdea H; Fernandez-Gonzalez P; Molina-Rueda F
    Rev Neurol; 2018 Jan; 66(2):35-44. PubMed ID: 29323399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powered exoskeletons for bipedal locomotion after spinal cord injury.
    Contreras-Vidal JL; A Bhagat N; Brantley J; Cruz-Garza JG; He Y; Manley Q; Nakagome S; Nathan K; Tan SH; Zhu F; Pons JL
    J Neural Eng; 2016 Jun; 13(3):031001. PubMed ID: 27064508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The improvement of the lower limb exoskeletons on the gait of patients with spinal cord injury: A protocol for systematic review and meta-analysis.
    Xue X; Yang X; Tu H; Liu W; Kong D; Fan Z; Deng Z; Li N
    Medicine (Baltimore); 2022 Jan; 101(4):e28709. PubMed ID: 35089234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Robot therapy with the H2 exoskeleton for gait rehabilitation in patients with incomplete spinal cord injry. A clinical experience].
    Gil-Agudo A; Del Ama-Espinosa AJ; Lozano-Berrio V; Fernández-López A; Megía García-Carpintero A; Benito-Penalva J; Pons JL
    Rehabilitacion (Madr); 2020; 54(2):87-95. PubMed ID: 32370833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 9. Trunk muscle activity patterns and motion patterns of patients with motor complete spinal cord injury at T8 and T10 walking with different un-powered exoskeletons.
    Guan X; Kuai S; Ji L; Wang R; Ji R
    J Spinal Cord Med; 2017 Jul; 40(4):463-470. PubMed ID: 28514926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study.
    Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S
    Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exoskeleton-based exercises for overground gait and balance rehabilitation in spinal cord injury: a systematic review of dose and dosage parameters.
    Nepomuceno P; Souza WH; Pakosh M; Musselman KE; Craven BC
    J Neuroeng Rehabil; 2024 May; 21(1):73. PubMed ID: 38705999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial.
    Gil-Agudo Á; Megía-García Á; Pons JL; Sinovas-Alonso I; Comino-Suárez N; Lozano-Berrio V; Del-Ama AJ
    J Neuroeng Rehabil; 2023 Mar; 20(1):36. PubMed ID: 36964574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics.
    Bach Baunsgaard C; Vig Nissen U; Katrin Brust A; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Benito J; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    Spinal Cord; 2018 Feb; 56(2):106-116. PubMed ID: 29105657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review.
    Lefeber N; Swinnen E; Kerckhofs E
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review.
    Tamburella F; Lorusso M; Tramontano M; Fadlun S; Masciullo M; Scivoletto G
    J Neuroeng Rehabil; 2022 Mar; 19(1):27. PubMed ID: 35292044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of locomotor training after incomplete spinal cord injury: a systematic review.
    Morawietz C; Moffat F
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2297-308. PubMed ID: 23850614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 18. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects.
    Tamburella F; Tagliamonte NL; Masciullo M; Pisotta I; Arquilla M; van Asseldonk EHF; van der Kooij H; Wu AR; Dzeladini F; Ijspeert AJ; Molinari M
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):147-164. Technology in Medicine. PubMed ID: 33386045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lower limb exoskeleton gait orthosis compared to mechanical gait orthosis on rehabilitation of patients with spinal cord injury: A systematic review and future perspectives.
    Zhang C; Li N; Xue X; Lu X; Li D; Hong Q
    Gait Posture; 2023 May; 102():64-71. PubMed ID: 36933346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usability and acceptance of using a lower-limb exoskeleton controlled by a BMI in incomplete spinal cord injury patients: a case study.
    Quiles V; Ferrero L; Ianez E; Ortiz M; Megia A; Comino N; Gil-Agudo AM; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4737-4740. PubMed ID: 33019049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.