These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29324036)

  • 1. Entomological Opportunities and Challenges for Sustainable Viticulture in a Global Market.
    Daane KM; Vincent C; Isaacs R; Ioriatti C
    Annu Rev Entomol; 2018 Jan; 63():193-214. PubMed ID: 29324036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape simplification increases vineyard pest outbreaks and insecticide use.
    Paredes D; Rosenheim JA; Chaplin-Kramer R; Winter S; Karp DS
    Ecol Lett; 2021 Jan; 24(1):73-83. PubMed ID: 33051978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly pheromone dispensers-a green route to manage the European grapevine moth?
    Lucchi A; Ladurner E; Iodice A; Savino F; Ricciardi R; Cosci F; Conte G; Benelli G
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9426-9442. PubMed ID: 29352393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Farming and Cover-Crop Management Reduce Pest Predation in Austrian Vineyards.
    Reiff JM; Kolb S; Entling MH; Herndl T; Möth S; Walzer A; Kropf M; Hoffmann C; Winter S
    Insects; 2021 Mar; 12(3):. PubMed ID: 33806420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adverse effects of the Bordeaux mixture copper-based fungicide on the non-target vineyard pest Lobesia botrana.
    Garinie T; Nusillard W; Lelièvre Y; Taranu ZE; Goubault M; Thiéry D; Moreau J; Louâpre P
    Pest Manag Sci; 2024 Sep; 80(9):4790-4799. PubMed ID: 38801156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arthropods on grapes benefit more from fungicide reduction than from organic farming.
    Reiff JM; Sudarsan K; Hoffmann C; Entling MH
    Pest Manag Sci; 2023 Sep; 79(9):3271-3279. PubMed ID: 37071711
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Scaccini D; Ruzzier E; Daane KM
    Insects; 2021 Mar; 12(3):. PubMed ID: 33808988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing crop field size does not consistently exacerbate insect pest problems.
    Rosenheim JA; Cluff E; Lippey MK; Cass BN; Paredes D; Parsa S; Karp DS; Chaplin-Kramer R
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2208813119. PubMed ID: 36067287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially Targeted Applications of Reduced-Risk Insecticides for Economical Control of Grape Berry Moth, Paralobesia viteana (Lepidoptera: Tortricidae).
    Mason KS; Roubos CR; Teixeira LA; Isaacs R
    J Econ Entomol; 2016 Oct; 109(5):2168-2174. PubMed ID: 27435929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pest management under climate change: The importance of understanding tritrophic relations.
    Castex V; Beniston M; Calanca P; Fleury D; Moreau J
    Sci Total Environ; 2018 Mar; 616-617():397-407. PubMed ID: 29127793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pheromone dispensers, including organic polymer fibers, described in the crop protection literature: comparison of their innovation potential.
    Hummel HE; Langner SS; Eisinger MT
    Commun Agric Appl Biol Sci; 2013; 78(2):233-52. PubMed ID: 25145244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility of Lobesia botrana (Lepidoptera: Tortricidae) to chlorantraniliprole in the Emilia Romagna Region of Northeast Italy.
    Pasquini S; Haxaire-Lutun MO; Rison JL; Flier WG; Teixeira LA
    J Econ Entomol; 2018 Feb; 111(1):369-374. PubMed ID: 29228312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy.
    Ioriatti C; Lucchi A
    J Chem Ecol; 2016 Jul; 42(7):571-83. PubMed ID: 27417503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced-risk insecticides for control of grape berry moth (Lepidoptera: Tortricidae) and conservation of natural enemies.
    Jenkins PE; Isaacs R
    J Econ Entomol; 2007 Jun; 100(3):855-65. PubMed ID: 17598548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side Effects of Sulfur Dust on the European Grapevine Moth
    Tacoli F; Cargnus E; Zandigiacomo P; Pavan F
    Insects; 2020 Nov; 11(11):. PubMed ID: 33238602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction.
    Tasin M; Larsson Herrera S; Knight AL; Barros-Parada W; Fuentes Contreras E; Pertot I
    Microb Ecol; 2018 Oct; 76(3):751-761. PubMed ID: 29526022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop protection practices and viral zoonotic risks within a One Health framework.
    Ratnadass A; Deguine JP
    Sci Total Environ; 2021 Jun; 774():145172. PubMed ID: 33610983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lobesia botrana IPM: electrospun polyester microfibers serve as biodegradable sex pheromone dispensers.
    Hummel HE; Langner SS
    Commun Agric Appl Biol Sci; 2013; 78(2):253-66. PubMed ID: 25145245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tillage Reduces Survival of Grape Berry Moth (Lepidoptera: Tortricidae), via Burial Rather Than Mechanical Injury.
    Matlock JM; Isaacs R; Grieshop M
    Environ Entomol; 2017 Feb; 46(1):100-106. PubMed ID: 28025219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blueberry IPM: Past Successes and Future Challenges.
    Rodriguez-Saona C; Vincent C; Isaacs R
    Annu Rev Entomol; 2019 Jan; 64():95-114. PubMed ID: 30629894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.