BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29324282)

  • 1. Influence of glycan modification on IgG1 biochemical and biophysical properties.
    Pawlowski JW; Bajardi-Taccioli A; Houde D; Feschenko M; Carlage T; Kaltashov IA
    J Pharm Biomed Anal; 2018 Mar; 151():133-144. PubMed ID: 29324282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms.
    Wada R; Matsui M; Kawasaki N
    MAbs; 2019; 11(2):350-372. PubMed ID: 30466347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis.
    Fang J; Richardson J; Du Z; Zhang Z
    Biochemistry; 2016 Feb; 55(6):860-8. PubMed ID: 26812426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the effect of multiple Fc glycan attributes on the effector functions and FcγRIIIa receptor binding activity of an IgG1 antibody.
    Pace D; Lewis N; Wu T; Gillespie R; Leiske D; Velayudhan J; Rohrbach A; Connell-Crowley L
    Biotechnol Prog; 2016 Sep; 32(5):1181-1192. PubMed ID: 27160519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan.
    Falconer DJ; Subedi GP; Marcella AM; Barb AW
    ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of glycosylation pattern on the molecular properties of monoclonal antibodies.
    Zheng K; Yarmarkovich M; Bantog C; Bayer R; Patapoff TW
    MAbs; 2014; 6(3):649-58. PubMed ID: 24662970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylation of Fcγ receptors influences their interaction with various IgG1 glycoforms.
    Cambay F; Forest-Nault C; Dumoulin L; Seguin A; Henry O; Durocher Y; De Crescenzo G
    Mol Immunol; 2020 May; 121():144-158. PubMed ID: 32222585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants.
    Dashivets T; Thomann M; Rueger P; Knaupp A; Buchner J; Schlothauer T
    PLoS One; 2015; 10(12):e0143520. PubMed ID: 26657484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc.
    Li CH; Narhi LO; Wen J; Dimitrova M; Wen ZQ; Li J; Pollastrini J; Nguyen X; Tsuruda T; Jiang Y
    Biochemistry; 2012 Dec; 51(50):10056-65. PubMed ID: 23078371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential influence on antibody dependent cellular phagocytosis by different glycoforms on therapeutic Monoclonal antibodies.
    Kuhns S; Shu J; Xiang C; Guzman R; Zhang Q; Bretzlaff W; Miscalichi N; Kalenian K; Joubert M
    J Biotechnol; 2020 Jun; 317():5-15. PubMed ID: 32361021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fc gamma receptor glycosylation modulates the binding of IgG glycoforms: a requirement for stable antibody interactions.
    Hayes JM; Frostell A; Cosgrave EF; Struwe WB; Potter O; Davey GP; Karlsson R; Anneren C; Rudd PM
    J Proteome Res; 2014 Dec; 13(12):5471-85. PubMed ID: 25345863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.
    Suzuki T; Ishii-Watabe A; Tada M; Kobayashi T; Kanayasu-Toyoda T; Kawanishi T; Yamaguchi T
    J Immunol; 2010 Feb; 184(4):1968-76. PubMed ID: 20083659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of glycosylation on a camelid antibody uniquely affects its FcγRI binding activity.
    Krahn N; Spearman M; Meier M; Dorion-Thibaudeau J; McDougall M; Patel TR; De Crescenzo G; Durocher Y; Stetefeld J; Butler M
    Eur J Pharm Sci; 2017 Jan; 96():428-439. PubMed ID: 27721040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies.
    Yu X; Baruah K; Harvey DJ; Vasiljevic S; Alonzi DS; Song BD; Higgins MK; Bowden TA; Scanlan CN; Crispin M
    J Am Chem Soc; 2013 Jul; 135(26):9723-32. PubMed ID: 23745692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycan profiling of proteins using lectin binding by Surface Plasmon Resonance.
    Wang W; Soriano B; Chen Q
    Anal Biochem; 2017 Dec; 538():53-63. PubMed ID: 28947169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Glycan Structure on the Stability and Receptor Binding of an IgG4-Fc.
    Kang H; Larson NR; White DR; Middaugh CR; Tolbert T; Schöneich C
    J Pharm Sci; 2020 Jan; 109(1):677-689. PubMed ID: 31669606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of N-Glycan Composition on Structure and Dynamics of IgG1 Fc and Their Implications for Antibody Engineering.
    Lee HS; Im W
    Sci Rep; 2017 Oct; 7(1):12659. PubMed ID: 28978918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function.
    Yamaguchi Y; Barb AW
    Glycobiology; 2020 Mar; 30(4):214-225. PubMed ID: 31822882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of glycosylation on monoclonal antibody conformation and stability.
    Zheng K; Bantog C; Bayer R
    MAbs; 2011; 3(6):568-76. PubMed ID: 22123061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.