These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29324348)

  • 1. Dependence among randomly acquired characteristics on shoeprints and their features.
    Kaplan Damary N; Mandel M; Wiesner S; Yekutieli Y; Shor Y; Spiegelman C
    Forensic Sci Int; 2018 Feb; 283():173-179. PubMed ID: 29324348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location distribution of randomly acquired characteristics on a shoe sole.
    Kaplan-Damary N; Mandel M; Yekutieli Y; Shor Y; Wiesner S
    J Forensic Sci; 2022 Sep; 67(5):1801-1809. PubMed ID: 35855550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of similarity between randomly acquired characteristics on high quality exemplars and crime scene impressions via analysis of feature size and shape.
    Richetelli N; Nobel M; Bodziak WJ; Speir JA
    Forensic Sci Int; 2017 Jan; 270():211-222. PubMed ID: 27838107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dataset of Digitized RACs and Their Rarity Score Analysis for Strengthening Shoeprint Evidence.
    Wiesner S; Shor Y; Tsach T; Kaplan-Damary N; Yekutieli Y
    J Forensic Sci; 2020 May; 65(3):762-774. PubMed ID: 31738459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherent variation in multiple shoe-sole test impressions.
    Shor Y; Wiesner S; Tsach T; Gurel R; Yekutieli Y
    Forensic Sci Int; 2018 Apr; 285():189-203. PubMed ID: 29428777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying randomly acquired characteristics on outsoles in terms of shape and position.
    Speir JA; Richetelli N; Fagert M; Hite M; Bodziak WJ
    Forensic Sci Int; 2016 Sep; 266():399-411. PubMed ID: 27416269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digitally processing an image of a shoe impression in blood.
    Daniel O; Levi A; Chaikovsky A; Cohen Y
    J Forensic Sci; 2021 May; 66(3):1143-1147. PubMed ID: 33332705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimate of the random match frequency of acquired characteristics in footwear: Part I - Impressions in blood.
    Smale AN; Speir JA
    Sci Justice; 2024 Jan; 64(1):117-133. PubMed ID: 38182307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimate of the random match frequency of acquired characteristics in footwear: Part II - Impressions in dust.
    Smale AN; Speir JA
    Sci Justice; 2024 Jan; 64(1):134-150. PubMed ID: 38182308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical discrimination of footwear: a method for the comparison of accidentals on shoe outsoles inspired by facial recognition techniques.
    Petraco ND; Gambino C; Kubic TA; Olivio D; Petraco N
    J Forensic Sci; 2010 Jan; 55(1):34-41. PubMed ID: 19895540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of three shoe sole impression lifting methods at high substrate temperatures.
    Taylor KM; Krosch MN; Chaseling J; Wright K
    J Forensic Sci; 2021 Jan; 66(1):303-314. PubMed ID: 33074576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing recent outdoor geolocation by analyzing microbiota from shoe soles and shoeprints even after indoor walking.
    Zhang J; Yu D; Wang Y; Shi L; Wang T; Simayijiang H; Yan J
    Forensic Sci Int Genet; 2023 Jul; 65():102869. PubMed ID: 37054666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimate of the random match frequency of acquired characteristics in a forensic footwear database.
    Smale AN; Speir JA
    Sci Justice; 2023 May; 63(3):427-437. PubMed ID: 37169469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system.
    Venkatasubramanian G; Hegde V; Lund SP; Iyer H; Herman M
    J Forensic Sci; 2021 Nov; 66(6):2232-2251. PubMed ID: 34374992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial frequency of randomly acquired characteristics on outsoles.
    Richetelli N; Speir JA
    J Forensic Sci; 2022 Sep; 67(5):1810-1824. PubMed ID: 35943117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape measurement tools in footwear analysis: a statistical investigation of accidental characteristics over time.
    Sheets HD; Gross S; Langenburg G; Bush PJ; Bush MA
    Forensic Sci Int; 2013 Oct; 232(1-3):84-91. PubMed ID: 24053869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Shoe Length from Partial Shoeprints.
    Zhang H; Liu L; Luo Y; Chang R
    J Forensic Sci; 2020 Nov; 65(6):2129-2137. PubMed ID: 32898298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of trace DNA and its application to DNA profiling of shoe insoles.
    Bright JA; Petricevic SF
    Forensic Sci Int; 2004 Oct; 145(1):7-12. PubMed ID: 15374589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A database of two-dimensional images of footwear outsole impressions.
    Park S; Carriquiry A
    Data Brief; 2020 Jun; 30():105508. PubMed ID: 32322634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evidential strength of a combination of corresponding class features in tire examination.
    Sjerps M; Alberink I; Visser R; Stoel RD
    Forensic Sci Int; 2022 Aug; 337():111351. PubMed ID: 35709588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.