These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29324348)

  • 21. Comparing footwear impressions that are close non-matches using correlation-based approaches.
    Venkatasubramanian G; Hegde V; Padi S; Iyer H; Herman M
    J Forensic Sci; 2021 May; 66(3):890-909. PubMed ID: 33682930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technical note: The Next Step - a semi-automatic coding and comparison system for forensic footwear impressions.
    Daniel O; Levi A; Pertsev R; Issan Y; Pasternak Z; Cohen A
    Forensic Sci Int; 2022 Aug; 337():111378. PubMed ID: 35839684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shoeprint image retrieval and crime scene shoeprint image linking by using convolutional neural network and normalized cross correlation.
    Wen Z; Curran JM; Wevers G
    Sci Justice; 2023 Jul; 63(4):439-450. PubMed ID: 37453775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Empirically observed and predicted estimates of chance association: Estimating the chance association of randomly acquired characteristics in footwear comparisons.
    Richetelli N; Bodziak WJ; Speir JA
    Forensic Sci Int; 2019 Sep; 302():109833. PubMed ID: 31539827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature.
    Park S; Carriquiry A
    Stat Anal Data Min; 2020 Apr; 13(2):188-199. PubMed ID: 32215164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical match: insole and shoe.
    Shor Y; Kennedy RB; Tsach T; Volkov N; Novoselsky Y; Vinokurov A
    J Forensic Sci; 2003 Jul; 48(4):808-10. PubMed ID: 12877297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of distinguishing information from evidence/observations when formulating propositions.
    Hicks T; Biedermann A; de Koeijer JA; Taroni F; Champod C; Evett IW
    Sci Justice; 2015 Dec; 55(6):520-5. PubMed ID: 26654089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shoe print examinations: effects of expectation, complexity and experience.
    Kerstholt JH; Paashuis R; Sjerps M
    Forensic Sci Int; 2007 Jan; 165(1):30-4. PubMed ID: 16533583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of TreadMatch scans to aid the process of footwear mark comparison.
    Reel S; Harris R; Reidy S; Chambers J
    Sci Justice; 2022 Sep; 62(5):530-539. PubMed ID: 36336446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic retrieval of shoeprint images using blocked sparse representation.
    Alizadeh S; Kose C
    Forensic Sci Int; 2017 Aug; 277():103-114. PubMed ID: 28628783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of footwear features on balance and stepping in older people.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    Gerontology; 2008; 54(1):18-23. PubMed ID: 18253023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developing a spatial-temporal method for the geographic investigation of shoeprint evidence.
    Lin G; Elmes G; Walnoha M; Chen X
    J Forensic Sci; 2009 Jan; 54(1):152-8. PubMed ID: 19018933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interpretation of shoeprint comparison class correspondences.
    Hancock S; Morgan-Smith R; Buckleton J
    Sci Justice; 2012 Dec; 52(4):243-8. PubMed ID: 23068775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pollen on grass clippings: putting the suspect at the scene of the crime.
    Horrocks M; Walsh KA
    J Forensic Sci; 2001 Jul; 46(4):947-9. PubMed ID: 11451083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of 3D footwear impressions using a range of different techniques.
    Larsen HJ; Bennett MR
    J Forensic Sci; 2021 May; 66(3):1056-1064. PubMed ID: 33394502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manufacturing processes for athletic shoe outsoles and their significance in the examination of footwear impression evidence.
    Bodziak WJ
    J Forensic Sci; 1986 Jan; 31(1):153-76. PubMed ID: 3944559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Medical-grade footwear: the impact of fit and comfort.
    Hurst B; Branthwaite H; Greenhalgh A; Chockalingam N
    J Foot Ankle Res; 2017; 10():2. PubMed ID: 28070223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The evidential value of distorted and rectified digital images in footwear imprint examination.
    Shor Y; Chaikovsky A; Tsach T
    Forensic Sci Int; 2006 Jun; 160(1):59-65. PubMed ID: 16191473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people.
    Menant JC; Perry SD; Steele JR; Menz HB; Munro BJ; Lord SR
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1970-6. PubMed ID: 18760402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved technique to enable 2-dimensional shoe sole impression evidence to be photographically recorded "to scale".
    Hall BR; Nolan AM
    J Forensic Sci; 1994 Jul; 39(4):1094-9. PubMed ID: 8064268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.