These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 29324388)
21. Solubility-driven toxicity of CuO nanoparticles to Caco2 cells and Escherichia coli: Effect of sonication energy and test environment. Käkinen A; Kahru A; Nurmsoo H; Kubo AL; Bondarenko OM Toxicol In Vitro; 2016 Oct; 36():172-179. PubMed ID: 27511801 [TBL] [Abstract][Full Text] [Related]
22. Impact of copper oxide particle dissolution on lung epithelial cell toxicity: response characterization using global transcriptional analysis. Boyadzhiev A; Avramescu ML; Wu D; Williams A; Rasmussen P; Halappanavar S Nanotoxicology; 2021 Apr; 15(3):380-399. PubMed ID: 33507836 [TBL] [Abstract][Full Text] [Related]
23. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Ahamed M; Akhtar MJ; Alhadlaq HA; Alrokayan SA Nanomedicine (Lond); 2015; 10(15):2365-77. PubMed ID: 26251192 [TBL] [Abstract][Full Text] [Related]
24. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape. Piret JP; Vankoningsloo S; Mejia J; Noël F; Boilan E; Lambinon F; Zouboulis CC; Masereel B; Lucas S; Saout C; Toussaint O Nanotoxicology; 2012 Nov; 6(7):789-803. PubMed ID: 22023055 [TBL] [Abstract][Full Text] [Related]
25. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938 [TBL] [Abstract][Full Text] [Related]
26. Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. Akhtar MJ; Ahamed M; Fareed M; Alrokayan SA; Kumar S J Toxicol Sci; 2012 Feb; 37(1):139-48. PubMed ID: 22293418 [TBL] [Abstract][Full Text] [Related]
27. Polyphenol effects on CuO-nanoparticle-mediated DNA damage, reactive oxygen species generation, and fibroblast cell death. Angelé-Martínez C; Ameer FS; Raval YS; Huang G; Tzeng TJ; Anker JN; Brumaghim JL Toxicol In Vitro; 2022 Feb; 78():105252. PubMed ID: 34624480 [TBL] [Abstract][Full Text] [Related]
28. Dissolution kinetics and solubility of copper oxide nanoparticles as affected by soil properties and aging time. Yang Q; Liu Y; Qiu Y; Wang Z; Li H Environ Sci Pollut Res Int; 2022 Jun; 29(27):40674-40685. PubMed ID: 35088280 [TBL] [Abstract][Full Text] [Related]
29. Mechanism of long-term toxicity of CuO NPs to microalgae. Che X; Ding R; Li Y; Zhang Z; Gao H; Wang W Nanotoxicology; 2018 Oct; 12(8):923-939. PubMed ID: 30182775 [TBL] [Abstract][Full Text] [Related]
30. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Sajjad H; Sajjad A; Haya RT; Khan MM; Zia M Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109682. PubMed ID: 37328134 [TBL] [Abstract][Full Text] [Related]
31. Genotoxicity of Copper Oxide Nanoparticles with Different Surface Chemistry on Rat Bone Marrow Mesenchymal Stem Cells. Zhang W; Jiang P; Chen W; Zheng B; Mao Z; Antipov A; Correia M; Larsen EH; Gao C J Nanosci Nanotechnol; 2016 Jun; 16(6):5489-97. PubMed ID: 27427588 [TBL] [Abstract][Full Text] [Related]
32. Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs. Ulloa-Ogaz AL; Piñón-Castillo HA; Muñoz-Castellanos LN; Athie-García MS; Ballinas-Casarrubias ML; Murillo-Ramirez JG; Flores-Ongay LÁ; Duran R; Orrantia-Borunda E Environ Sci Pollut Res Int; 2017 Sep; 24(27):22048-22060. PubMed ID: 28791555 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Srikanth K; Pereira E; Duarte AC; Rao JV Protoplasma; 2016 May; 253(3):873-884. PubMed ID: 26115719 [TBL] [Abstract][Full Text] [Related]
35. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Angelé-Martínez C; Nguyen KV; Ameer FS; Anker JN; Brumaghim JL Nanotoxicology; 2017 Mar; 11(2):278-288. PubMed ID: 28248593 [TBL] [Abstract][Full Text] [Related]
36. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity. Zhao J; Cao X; Liu X; Wang Z; Zhang C; White JC; Xing B Nanotoxicology; 2016 Nov; 10(9):1297-305. PubMed ID: 27345461 [TBL] [Abstract][Full Text] [Related]
37. Time-Dependent Toxicity Responses in Daphnia magna Exposed to CuO and ZnO Nanoparticles. Kim S; Samanta P; Yoo J; Kim WK; Jung J Bull Environ Contam Toxicol; 2017 Apr; 98(4):502-507. PubMed ID: 28078368 [TBL] [Abstract][Full Text] [Related]
38. Synthesis methods influence characteristics, behaviour and toxicity of bare CuO NPs compared to bulk CuO and ionic Cu after in vitro exposure of Ruditapes philippinarum hemocytes. Volland M; Hampel M; Katsumiti A; Yeste MP; Gatica JM; Cajaraville M; Blasco J Aquat Toxicol; 2018 Jun; 199():285-295. PubMed ID: 29702437 [TBL] [Abstract][Full Text] [Related]
39. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model. Alaraby M; Hernández A; Marcos R Nanotoxicology; 2016 Aug; 10(6):749-60. PubMed ID: 26634780 [TBL] [Abstract][Full Text] [Related]