These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 29324402)
1. C-FSCV: Compressive Fast-Scan Cyclic Voltammetry for Brain Dopamine Recording. Zamani H; Bahrami HR; Chalwadi P; Garris PA; Mohseni P IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):51-59. PubMed ID: 29324402 [TBL] [Abstract][Full Text] [Related]
2. Real-time processing of fast-scan cyclic voltammetry (FSCV) data using a field-programmable gate array (FPGA). Bozorgzadeh B; Covey DP; Heidenreich BA; Garris PA; Mohseni P Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2036-9. PubMed ID: 25570384 [TBL] [Abstract][Full Text] [Related]
3. A baseline drift detrending technique for fast scan cyclic voltammetry. DeWaele M; Oh Y; Park C; Kang YM; Shin H; Blaha CD; Bennet KE; Kim IY; Lee KH; Jang DP Analyst; 2017 Nov; 142(22):4317-4321. PubMed ID: 29063091 [TBL] [Abstract][Full Text] [Related]
4. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. Burrell MH; Atcherley CW; Heien ML; Lipski J ACS Chem Neurosci; 2015 Nov; 6(11):1802-12. PubMed ID: 26322962 [TBL] [Abstract][Full Text] [Related]
6. Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry. Oh Y; Park C; Kim DH; Shin H; Kang YM; DeWaele M; Lee J; Min HK; Blaha CD; Bennet KE; Kim IY; Lee KH; Jang DP Anal Chem; 2016 Nov; 88(22):10962-10970. PubMed ID: 27774784 [TBL] [Abstract][Full Text] [Related]
7. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation. Chang SY; Kimble CJ; Kim I; Paek SB; Kressin KR; Boesche JB; Whitlock SV; Eaker DR; Kasasbeh A; Horne AE; Blaha CD; Bennet KE; Lee KH J Neurosurg; 2013 Dec; 119(6):1556-65. PubMed ID: 24116724 [TBL] [Abstract][Full Text] [Related]
9. A miniaturized device for wireless FSCV monitoring of dopamine in an ambulatory subject. Roham M; Covey DP; Daberkow DP; Ramsson ES; Howard CD; Garris PA; Mohseni P Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5322-5. PubMed ID: 21096069 [TBL] [Abstract][Full Text] [Related]
10. FPGA implementation of principal component regression (PCR) for real-time differentiation of dopamine from interferents. Bozorgzadeh B; Covey DP; Garris PA; Mohseni P Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5151-4. PubMed ID: 26737451 [TBL] [Abstract][Full Text] [Related]
11. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats. Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892 [TBL] [Abstract][Full Text] [Related]
12. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. Bledsoe JM; Kimble CJ; Covey DP; Blaha CD; Agnesi F; Mohseni P; Whitlock S; Johnson DM; Horne A; Bennet KE; Lee KH; Garris PA J Neurosurg; 2009 Oct; 111(4):712-23. PubMed ID: 19425890 [TBL] [Abstract][Full Text] [Related]
13. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. Garris PA; Ensman R; Poehlman J; Alexander A; Langley PE; Sandberg SG; Greco PG; Wightman RM; Rebec GV J Neurosci Methods; 2004 Dec; 140(1-2):103-15. PubMed ID: 15589340 [TBL] [Abstract][Full Text] [Related]
14. Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data. Harun R; Grassi CM; Munoz MJ; Torres GE; Wagner AK Brain Res; 2015 Mar; 1599():67-84. PubMed ID: 25527399 [TBL] [Abstract][Full Text] [Related]
15. Voltammetric measurement of electrically evoked dopamine levels in the striatum of the anesthetized Syrian hamster. Greco PG; Meisel RL; Heidenreich BA; Garris PA J Neurosci Methods; 2006 Apr; 152(1-2):55-64. PubMed ID: 16176838 [TBL] [Abstract][Full Text] [Related]
16. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Oh Y; Heien ML; Park C; Kang YM; Kim J; Boschen SL; Shin H; Cho HU; Blaha CD; Bennet KE; Lee HK; Jung SJ; Kim IY; Lee KH; Jang DP Biosens Bioelectron; 2018 Dec; 121():174-182. PubMed ID: 30218925 [TBL] [Abstract][Full Text] [Related]
17. Neurochemostat: A Neural Interface SoC With Integrated Chemometrics for Closed-Loop Regulation of Brain Dopamine. Bozorgzadeh B; Schuweiler DR; Bobak MJ; Garris PA; Mohseni P IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):654-67. PubMed ID: 26390501 [TBL] [Abstract][Full Text] [Related]
18. Presynaptic dopamine dynamics in striatal brain slices with fast-scan cyclic voltammetry. Maina FK; Khalid M; Apawu AK; Mathews TA J Vis Exp; 2012 Jan; (59):. PubMed ID: 22270035 [TBL] [Abstract][Full Text] [Related]
19. Temporal differentiation of pH-dependent capacitive current from dopamine. Yoshimi K; Weitemier A Anal Chem; 2014 Sep; 86(17):8576-84. PubMed ID: 25105214 [TBL] [Abstract][Full Text] [Related]