These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29324686)

  • 1. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers.
    Deng R; Li M; Muneer B; Zhu Q; Shi Z; Song L; Zhang T
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causal optimal and optically transparent ultra-wideband microwave metamaterials absorber with high angular stability.
    Li J; Shi L; Chen H; Qu L; Yi Y; Zhang Q; Ma Y; Wang J
    Opt Express; 2023 Dec; 31(26):44385-44400. PubMed ID: 38178511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically Transparent Flexible Broadband Metamaterial Absorber Based on Topology Optimization Design.
    Min P; Song Z; Yang L; Ralchenko VG; Zhu J
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings.
    Ma L; Xu H; Lu Z; Tan J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17727-17738. PubMed ID: 35389630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an Ultra-Wideband Transparent Wave Absorber.
    Dai H; Li S; Dong P; Ma Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband microwave absorption utilizing water-based metamaterial structures.
    Zhao J; Wei S; Wang C; Chen K; Zhu B; Jiang T; Feng Y
    Opt Express; 2018 Apr; 26(7):8522-8531. PubMed ID: 29715818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid customized design of a conformal optical transparent metamaterial absorber based on the circuit analog optimization method.
    Dong L; Si L; Xu H; Shen Q; Lv X; Zhuang Y; Zhang Q
    Opt Express; 2022 Feb; 30(5):8303-8316. PubMed ID: 35299574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reconfigurable ultra-broadband transparent absorber combined with ITO and structural water.
    Wang Y; Yang H; Wu J; Yang Y; Jin J; Geng X; Huang X
    Nanoscale; 2023 Oct; 15(39):16144-16154. PubMed ID: 37771310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband and polarization-insensitive metamaterial absorber with loading lumped resistors.
    Xiong H; Bin Long T; Shi T; Xuan Jiang B; Tao Zhang J
    Appl Opt; 2020 Aug; 59(23):7092-7098. PubMed ID: 32788804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials.
    Zhong S; He S
    Sci Rep; 2013; 3():2083. PubMed ID: 23803861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Local-Chiral Metamaterial: Effective Modulation of Amplitude & Phase for Wideband Polarization-Insensitive Absorption.
    Liu J; Duan Y; Chen W; Shi Y; Di J; Zhang T; Pang H; Huang L; Gong J; Wang J
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8119-8129. PubMed ID: 38293896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity.
    Gao Z; Xu C; Tian X; Wang J; Tian C; Yang B; Qu S; Fan Q
    Opt Express; 2021 Jul; 29(14):22108-22116. PubMed ID: 34265982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extremely wideband and lightweight metamaterial absorber.
    Shen Y; Pei Z; Pang Y; Wang J; Zhang A; Qu S
    J Appl Phys; 2015 Jun; 117(22):224503. PubMed ID: 26130845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically transparent metasurface Salisbury screen with wideband microwave absorption.
    Li T; Chen K; Ding G; Zhao J; Jiang T; Feng Y
    Opt Express; 2018 Dec; 26(26):34384-34395. PubMed ID: 30650861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity.
    Wang H; Zhang Y; Ji C; Zhang C; Liu D; Zhang Z; Lu Z; Tan J; Guo LJ
    Adv Sci (Weinh); 2019 Oct; 6(19):1901320. PubMed ID: 31592425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid metamaterial absorber for ultra-low and dual-broadband absorption.
    Zhang C; Yin S; Long C; Dong BW; He D; Cheng Q
    Opt Express; 2021 Apr; 29(9):14078-14086. PubMed ID: 33985133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial.
    Ning J; Chen K; Zhao W; Zhao J; Jiang T; Feng Y
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible and transparent broadband microwave metasurface absorber based on multipolar interference engineering.
    Luo Y; Huang L; Ding J; Liu W; Sun B; Xie C; Yang H; Wu J
    Opt Express; 2022 Feb; 30(5):7694-7707. PubMed ID: 35299525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.