These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29324686)

  • 21. Broadband microwave coding metamaterial absorbers.
    Tran MC; Pham VH; Ho TH; Nguyen TT; Do HT; Bui XK; Bui ST; Le DT; Pham TL; Vu DL
    Sci Rep; 2020 Feb; 10(1):1810. PubMed ID: 32020003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Ultra-Broadband and Highly-Efficient Metamaterial Absorber with Stand-Up Gradient Impedance Graphene Films.
    Wu B; Chen B; Ma S; Zhang D; Zu HR
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber.
    Zhang Y; Dong H; Mou N; Chen L; Li R; Zhang L
    Opt Express; 2020 Aug; 28(18):26836-26849. PubMed ID: 32906950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transparent ultra-wideband double-resonance-layer metamaterial absorber designed by a semiempirical optimization method.
    Li H; Dong H; Zhang Y; Mou N; Xin Y; Deng R; Zhang L
    Opt Express; 2021 Jun; 29(12):18446-18457. PubMed ID: 34154100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications.
    Zhang Y; Dong H; Mou N; Li H; Yao X; Zhang L
    Nanoscale; 2021 Apr; 13(16):7831-7837. PubMed ID: 33876797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metamaterial-inspired optically transparent active dual-band frequency selective surface with independent wideband tunability.
    Yang J; Chen J; Quan L; Zhao Z; Shi H; Liu Y
    Opt Express; 2021 Aug; 29(17):27542-27553. PubMed ID: 34615168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Resistive Metamaterial Absorber Loaded with Metallic Resonators for the Enhancement of Lower-Frequency Absorption.
    Shen Y; Zhang JQ; Pang YQ; Zheng L; Wang JF; Ma H; Qu SB
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain.
    Zhang Y; Zhao J; Cao J; Mao B
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29895793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates.
    Pang Y; Cheng H; Zhou Y; Li Z; Wang J
    Opt Express; 2012 May; 20(11):12515-20. PubMed ID: 22714239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology.
    Jeong H; Tentzeris MM; Lim S
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.
    Kim HK; Lee D; Lim S
    Sci Rep; 2016 Aug; 6():31823. PubMed ID: 27546310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Material-structure integrated design for ultra-broadband all-dielectric metamaterial absorber.
    Peng M; Qin F; Zhou L; Wei H; Zhu Z; Shen X
    J Phys Condens Matter; 2021 Dec; 34(11):. PubMed ID: 34905743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.
    Shen Y; Zhang J; Pang Y; Zheng L; Wang J; Ma H; Qu S
    Sci Rep; 2018 Mar; 8(1):4423. PubMed ID: 29535316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact multi-functional frequency-selective absorber based on customizable impedance films.
    Lin M; Yi J; Chen X; Jiang ZH; Zhu L; Qi P; Burokur SN
    Opt Express; 2021 May; 29(10):14974-14984. PubMed ID: 33985207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transparent and ultra-wideband metamaterial absorber using coupled hexagonal combined elements.
    Jiang H; Yang W; Lei S; Hu H; Chen B; Bao Y; He Z
    Opt Express; 2021 Aug; 29(18):29439-29448. PubMed ID: 34615053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metamaterial perfect absorber with unabated size-independent absorption.
    Yu P; Besteiro LV; Wu J; Huang Y; Wang Y; Govorov AO; Wang Z
    Opt Express; 2018 Aug; 26(16):20471-20480. PubMed ID: 30119357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual broadband metamaterial absorber.
    Kim YJ; Yoo YJ; Kim KW; Rhee JY; Kim YH; Lee Y
    Opt Express; 2015 Feb; 23(4):3861-8. PubMed ID: 25836425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Configurable metamaterial absorber with pseudo wideband spectrum.
    Zhu W; Huang Y; Rukhlenko ID; Wen G; Premaratne M
    Opt Express; 2012 Mar; 20(6):6616-21. PubMed ID: 22418545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.