These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29324686)

  • 41. A Polarization Independent Quasi-TEM Metamaterial Absorber for X and Ku Band Sensing Applications.
    Hoque A; Tariqul Islam M; Almutairi AF; Alam T; Jit Singh M; Amin N
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Graphene Based Controllable Broadband Terahertz Metamaterial Absorber with Transmission Band.
    Zhou Q; Zha S; Liu P; Liu C; Bian LA; Zhang J; Liu H; Ding L
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30501033
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite.
    Huang Y; Yuan X; Wang C; Chen M; Tang L; Fang D
    Opt Lett; 2018 Jun; 43(12):2764-2767. PubMed ID: 29905683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transparent transmission-selective radar-infrared bi-stealth structure.
    Zhong S; Wu L; Liu T; Huang J; Jiang W; Ma Y
    Opt Express; 2018 Jun; 26(13):16466-16476. PubMed ID: 30119477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing an ultra-thin and wideband low-frequency absorber based on lumped resistance.
    Du Z; Liang J; Cai T; Wang G; Deng T; Wu B
    Opt Express; 2022 Jan; 30(2):914-925. PubMed ID: 35209270
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Water metamaterial for ultra-broadband and wide-angle absorption.
    Xie J; Zhu W; Rukhlenko ID; Xiao F; He C; Geng J; Liang X; Jin R; Premaratne M
    Opt Express; 2018 Feb; 26(4):5052-5059. PubMed ID: 29475347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.
    Li W; Guler U; Kinsey N; Naik GV; Boltasseva A; Guan J; Shalaev VM; Kildishev AV
    Adv Mater; 2014 Dec; 26(47):7959-65. PubMed ID: 25327161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wideband visible-light absorption in an ultrathin silicon nanostructure.
    Zhu W; Xiao F; Rukhlenko ID; Geng J; Liang X; Premaratne M; Jin R
    Opt Express; 2017 Mar; 25(5):5781-5786. PubMed ID: 28380835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wideband Metamaterial Absorbers Based on Conductive Plastic with Additive Manufacturing Technology.
    Lu Y; Chi B; Liu D; Gao S; Gao P; Huang Y; Yang J; Yin Z; Deng G
    ACS Omega; 2018 Sep; 3(9):11144-11150. PubMed ID: 31459223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scalable-Manufactured Metamaterials for Simultaneous Visible Transmission, Infrared Reflection, and Microwave Absorption.
    Li D; Chen Q; Huang J; Xu H; Lu Y; Song W
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35834403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Angular- and Polarization-insensitive Ultrathin Double-layered Metamaterial Absorber for Ultra-wideband Application.
    Cong LL; Cao XY; Song T; Gao J; Lan JX
    Sci Rep; 2018 Jun; 8(1):9627. PubMed ID: 29941959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber.
    Wang J; Yang R; Xu J; Tian J; Ma R; Zhang W
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30189622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reflection phase modification by metamaterial interface: an understanding of design criteria for ultrathin multispectral absorber.
    Li M; Deng R; Muneer B; Zhang T
    Opt Express; 2019 Sep; 27(18):26131-26142. PubMed ID: 31510473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimal parameter retrieval for metamaterial absorbers using the least-square method for wide incidence angle insensitivity.
    Lee D; Trung NT; Moon UC; Lim S
    Appl Opt; 2017 Jun; 56(16):4670-4674. PubMed ID: 29047598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane.
    Jeong H; Lim S
    Sci Rep; 2018 Jun; 8(1):9226. PubMed ID: 29907858
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Broadband Microwave Absorption by Logarithmic Spiral Metasurface.
    Wang S; Hou B; Chan CT
    Sci Rep; 2019 Oct; 9(1):14078. PubMed ID: 31575948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrathin multi-band planar metamaterial absorber based on standing wave resonances.
    Peng XY; Wang B; Lai S; Zhang DH; Teng JH
    Opt Express; 2012 Dec; 20(25):27756-65. PubMed ID: 23262721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz.
    Wu B; Tuncer HM; Naeem M; Yang B; Cole MT; Milne WI; Hao Y
    Sci Rep; 2014 Feb; 4():4130. PubMed ID: 24549254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.