These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29324686)

  • 61. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation.
    Shen Y; Zhang J; Pang Y; Wang J; Ma H; Qu S
    Opt Express; 2018 Jun; 26(12):15665-15674. PubMed ID: 30114824
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe
    Liu Y; Chen Z; Zhang Y; Feng R; Chen X; Xiong C; Dong L
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13860-13868. PubMed ID: 29589899
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Frequency-reconfigurable metamaterial absorber/reflector with eight operating modes.
    Yang R; Xu J; Wang J; Ma R; Zhang W
    Opt Express; 2019 Jun; 27(12):16550-16559. PubMed ID: 31252879
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optically transparent microwave screens based on engineered graphene layers.
    Grande M; Bianco GV; Vincenti MA; de Ceglia D; Capezzuto P; Petruzzelli V; Scalora M; Bruno G; D'Orazio A
    Opt Express; 2016 Oct; 24(20):22788-22795. PubMed ID: 27828344
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optically transparent microwave absorber based on water-based moth-eye structures.
    Kwon H; D'Aguanno G; Alú A
    Opt Express; 2021 Mar; 29(6):9190-9198. PubMed ID: 33820351
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Conceptual-based design of an ultrabroadband microwave metamaterial absorber.
    Qu S; Hou Y; Sheng P
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34480006
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flexible and transparent metadevices for terahertz, microwave, and infrared multispectral stealth based on modularization design.
    Sun B; Huang L; Ding J; Luo Y; Zhang Y; Li R; Wang X; Wen Q; Xiao S
    Opt Express; 2023 Feb; 31(5):8650-8667. PubMed ID: 36859976
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Membrane acoustic metamaterial absorbers with magnetic negative stiffness.
    Zhao J; Li X; Wang Y; Wang W; Zhang B; Gai X
    J Acoust Soc Am; 2017 Feb; 141(2):840. PubMed ID: 28253664
    [TBL] [Abstract][Full Text] [Related]  

  • 72. SNG and DNG meta-absorber with fractional absorption band for sensing application.
    Hoque A; Islam MT; Almutairi AF; Chowdhury MEH; Samsuzzaman M
    Sci Rep; 2020 Aug; 10(1):13086. PubMed ID: 32753600
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ultra-thin and broadband tunable metamaterial graphene absorber.
    Xiong H; Wu YB; Dong J; Tang MC; Jiang YN; Zeng XP
    Opt Express; 2018 Jan; 26(2):1681-1688. PubMed ID: 29402039
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ultrawide Bandwidth Electromagnetic Wave Absorbers Composed of Double-Layer Frequency Selective Surfaces with Different Patterns.
    Liu T; Kim SS
    Sci Rep; 2018 Sep; 8(1):13889. PubMed ID: 30224657
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A multimode, broadband and all-inkjet-printed absorber using characteristic mode analysis.
    Zha D; Dong J; Cao Z; Zhang Y; He F; Li R; He Y; Miao L; Bie S; Jiang J
    Opt Express; 2020 Mar; 28(6):8609-8618. PubMed ID: 32225482
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optically transparent metamirror with broadband chiral absorption in the microwave region.
    Kong X; Wang Z; Du L; Niu C; Sun C; Zhao J; Li X
    Opt Express; 2019 Dec; 27(26):38029-38038. PubMed ID: 31878575
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Three-layer structure microwave absorbers based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers.
    Liu H; Meng X; Yang X; Jing M; Shen X; Dong M
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2878-84. PubMed ID: 24734704
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide.
    Huang J; Li J; Yang Y; Li J; Li J; Zhang Y; Yao J
    Opt Express; 2020 Mar; 28(5):7018-7027. PubMed ID: 32225937
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes.
    Min P; Song Z; Yang L; Dai B; Zhu J
    Opt Express; 2020 Jun; 28(13):19518-19530. PubMed ID: 32672227
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.