These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 29325042)

  • 21. Glycan processing in gut microbiomes.
    La Rosa SL; Ostrowski MP; Vera-Ponce de León A; McKee LS; Larsbrink J; Eijsink VG; Lowe EC; Martens EC; Pope PB
    Curr Opin Microbiol; 2022 Jun; 67():102143. PubMed ID: 35338908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts.
    Tinker KA; Ottesen EA
    Appl Environ Microbiol; 2016 Nov; 82(22):6603-6610. PubMed ID: 27590811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Hibernator Microbiome: Host-Bacterial Interactions in an Extreme Nutritional Symbiosis.
    Carey HV; Assadi-Porter FM
    Annu Rev Nutr; 2017 Aug; 37():477-500. PubMed ID: 28715992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism.
    Liao SF; Ji F; Fan P; Denryter K
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279233
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Theilmann MC; Goh YJ; Nielsen KF; Klaenhammer TR; Barrangou R; Abou Hachem M
    mBio; 2017 Nov; 8(6):. PubMed ID: 29162708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gut microbiota functions: metabolism of nutrients and other food components.
    Rowland I; Gibson G; Heinken A; Scott K; Swann J; Thiele I; Tuohy K
    Eur J Nutr; 2018 Feb; 57(1):1-24. PubMed ID: 28393285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla.
    Mahowald MA; Rey FE; Seedorf H; Turnbaugh PJ; Fulton RS; Wollam A; Shah N; Wang C; Magrini V; Wilson RK; Cantarel BL; Coutinho PM; Henrissat B; Crock LW; Russell A; Verberkmoes NC; Hettich RL; Gordon JI
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5859-64. PubMed ID: 19321416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota.
    Li M; Shang Q; Li G; Wang X; Yu G
    Mar Drugs; 2017 Mar; 15(4):. PubMed ID: 28338633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultivable, Host-Specific
    Vera-Ponce de León A; Jahnes BC; Duan J; Camuy-Vélez LA; Sabree ZL
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting.
    Dridi L; Altamura F; Gonzalez E; Lui O; Kubinski R; Pidgeon R; Montagut A; Chong J; Xia J; Maurice CF; Castagner B
    Nat Commun; 2023 Feb; 14(1):662. PubMed ID: 36750571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diet and Gut Microbiota in Health and Disease.
    Shen TD
    Nestle Nutr Inst Workshop Ser; 2017; 88():117-126. PubMed ID: 28346928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deciphering Human Gut Microbiota-Nutrient Interactions: A Role for Biochemistry.
    Chittim CL; Irwin SM; Balskus EP
    Biochemistry; 2018 May; 57(18):2567-2577. PubMed ID: 29669199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes.
    Martens EC; Kelly AG; Tauzin AS; Brumer H
    J Mol Biol; 2014 Nov; 426(23):3851-65. PubMed ID: 25026064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients.
    Shortt C; Hasselwander O; Meynier A; Nauta A; Fernández EN; Putz P; Rowland I; Swann J; Türk J; Vermeiren J; Antoine JM
    Eur J Nutr; 2018 Feb; 57(1):25-49. PubMed ID: 29086061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm.
    Martens EC; Koropatkin NM; Smith TJ; Gordon JI
    J Biol Chem; 2009 Sep; 284(37):24673-7. PubMed ID: 19553672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary polysaccharides: fermentation potentials of a primitive gut ecosystem.
    Zeibich L; Schmidt O; Drake HL
    Environ Microbiol; 2019 Apr; 21(4):1436-1451. PubMed ID: 30724449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain-level functional variation in the human gut microbiota based on bacterial binding to artificial food particles.
    Patnode ML; Guruge JL; Castillo JJ; Couture GA; Lombard V; Terrapon N; Henrissat B; Lebrilla CB; Gordon JI
    Cell Host Microbe; 2021 Apr; 29(4):664-673.e5. PubMed ID: 33571448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbohydrates and the human gut microbiota.
    Chassard C; Lacroix C
    Curr Opin Clin Nutr Metab Care; 2013 Jul; 16(4):453-60. PubMed ID: 23719143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Ruminococci: key symbionts of the gut ecosystem.
    La Reau AJ; Suen G
    J Microbiol; 2018 Mar; 56(3):199-208. PubMed ID: 29492877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes.
    Bledsoe JW; Peterson BC; Swanson KS; Small BC
    PLoS One; 2016; 11(11):e0166379. PubMed ID: 27846300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.