These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 29325042)

  • 41. Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes.
    Bledsoe JW; Peterson BC; Swanson KS; Small BC
    PLoS One; 2016; 11(11):e0166379. PubMed ID: 27846300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TonB-dependent transport by the gut microbiota: novel aspects of an old problem.
    Bolam DN; van den Berg B
    Curr Opin Struct Biol; 2018 Aug; 51():35-43. PubMed ID: 29550504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contributions of the Interaction Between Dietary Protein and Gut Microbiota to Intestinal Health.
    Ma N; Tian Y; Wu Y; Ma X
    Curr Protein Pept Sci; 2017; 18(8):795-808. PubMed ID: 28215168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Fermentative metabolism by the human gut microbiota].
    Bernalier-Donadille A
    Gastroenterol Clin Biol; 2010 Sep; 34 Suppl 1():S16-22. PubMed ID: 20889000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physiological Role of Gut Microbiota for Maintaining Human Health.
    Andoh A
    Digestion; 2016; 93(3):176-81. PubMed ID: 26859303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial degradation of complex carbohydrates in the gut.
    Flint HJ; Scott KP; Duncan SH; Louis P; Forano E
    Gut Microbes; 2012; 3(4):289-306. PubMed ID: 22572875
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus.
    Ndeh D; Baslé A; Strahl H; Yates EA; McClurgg UL; Henrissat B; Terrapon N; Cartmell A
    Nat Commun; 2020 Jan; 11(1):646. PubMed ID: 32005816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N-glycan Utilization by Bifidobacterium Gut Symbionts Involves a Specialist β-Mannosidase.
    Cordeiro RL; Pirolla RAS; Persinoti GF; Gozzo FC; de Giuseppe PO; Murakami MT
    J Mol Biol; 2019 Feb; 431(4):732-747. PubMed ID: 30641082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization.
    Golisch B; Lei Z; Tamura K; Brumer H
    ACS Chem Biol; 2021 Nov; 16(11):2087-2102. PubMed ID: 34709792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Tasmanian devil microbiome-implications for conservation and management.
    Cheng Y; Fox S; Pemberton D; Hogg C; Papenfuss AT; Belov K
    Microbiome; 2015 Dec; 3():76. PubMed ID: 26689946
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of diet on the gut microbiota.
    Scott KP; Gratz SW; Sheridan PO; Flint HJ; Duncan SH
    Pharmacol Res; 2013 Mar; 69(1):52-60. PubMed ID: 23147033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken.
    Xu Y; Yang H; Zhang L; Su Y; Shi D; Xiao H; Tian Y
    BMC Microbiol; 2016 Nov; 16(1):259. PubMed ID: 27814685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources.
    Rimoldi S; Terova G; Ascione C; Giannico R; Brambilla F
    PLoS One; 2018; 13(3):e0193652. PubMed ID: 29509788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bacteroides thetaiotaomicron.
    Porter NT; Luis AS; Martens EC
    Trends Microbiol; 2018 Nov; 26(11):966-967. PubMed ID: 30193959
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A refined palate: bacterial consumption of host glycans in the gut.
    Marcobal A; Southwick AM; Earle KA; Sonnenburg JL
    Glycobiology; 2013 Sep; 23(9):1038-46. PubMed ID: 23720460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of the normal gut microbiota.
    Jandhyala SM; Talukdar R; Subramanyam C; Vuyyuru H; Sasikala M; Nageshwar Reddy D
    World J Gastroenterol; 2015 Aug; 21(29):8787-803. PubMed ID: 26269668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Gut Bacteria-Driven Obesity Development.
    Compare D; Rocco A; Sanduzzi Zamparelli M; Nardone G
    Dig Dis; 2016; 34(3):221-9. PubMed ID: 27028448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation.
    Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z
    BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Glycolytic Versatility of
    Benítez-Páez A; Gómez Del Pulgar EM; Sanz Y
    Front Cell Infect Microbiol; 2017; 7():383. PubMed ID: 28971068
    [No Abstract]   [Full Text] [Related]  

  • 60. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides.
    Ravcheev DA; Thiele I
    Front Genet; 2017; 8():111. PubMed ID: 28912798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.