BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29325505)

  • 1. The relationship between cholesterol level and Alzheimer's disease-associated APP proteolysis/Aβ metabolism.
    Wang C; Shou Y; Pan J; Du Y; Liu C; Wang H
    Nutr Neurosci; 2019 Jul; 22(7):453-463. PubMed ID: 29325505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP.
    Corbett GT; Gonzalez FJ; Pahan K
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8445-50. PubMed ID: 26080426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APP overexpression in the absence of NPC1 exacerbates metabolism of amyloidogenic proteins of Alzheimer's disease.
    Maulik M; Peake K; Chung J; Wang Y; Vance JE; Kar S
    Hum Mol Genet; 2015 Dec; 24(24):7132-50. PubMed ID: 26433932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain.
    Henderson BW; Gentry EG; Rush T; Troncoso JC; Thambisetty M; Montine TJ; Herskowitz JH
    J Neurochem; 2016 Aug; 138(4):525-31. PubMed ID: 27246255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol, lipids, amyloid Beta, and Alzheimer's.
    Vestergaard M; Hamada T; Morita M; Takagi M
    Curr Alzheimer Res; 2010 May; 7(3):262-70. PubMed ID: 19715550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease.
    Marzolo MP; Bu G
    Semin Cell Dev Biol; 2009 Apr; 20(2):191-200. PubMed ID: 19041409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cholesterol and Alzheimer's disease].
    Kálmán J; Janka Z
    Orv Hetil; 2005 Sep; 146(37):1903-11. PubMed ID: 16255374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAGE mediates Aβ accumulation in a mouse model of Alzheimer's disease via modulation of β- and γ-secretase activity.
    Fang F; Yu Q; Arancio O; Chen D; Gore SS; Yan SS; Yan SF
    Hum Mol Genet; 2018 Mar; 27(6):1002-1014. PubMed ID: 29329433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides.
    Siegel G; Gerber H; Koch P; Bruestle O; Fraering PC; Rajendran L
    Cell Rep; 2017 Jun; 19(10):1967-1976. PubMed ID: 28591569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes.
    Yang H; Wang Y; Kar S
    Glia; 2017 Nov; 65(11):1728-1743. PubMed ID: 28722194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models.
    Natunen T; Takalo M; Kemppainen S; Leskelä S; Marttinen M; Kurkinen KMA; Pursiheimo JP; Sarajärvi T; Viswanathan J; Gabbouj S; Solje E; Tahvanainen E; Pirttimäki T; Kurki M; Paananen J; Rauramaa T; Miettinen P; Mäkinen P; Leinonen V; Soininen H; Airenne K; Tanzi RE; Tanila H; Haapasalo A; Hiltunen M
    Neurobiol Dis; 2016 Jan; 85():187-205. PubMed ID: 26563932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosomal-Lysosomal Cholesterol Sequestration by U18666A Differentially Regulates Amyloid Precursor Protein (APP) Metabolism in Normal and APP-Overexpressing Cells.
    Chung J; Phukan G; Vergote D; Mohamed A; Maulik M; Stahn M; Andrew RJ; Thinakaran G; Posse de Chaves E; Kar S
    Mol Cell Biol; 2018 Jun; 38(11):. PubMed ID: 29530923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Alzheimer beta-amyloid precursor trafficking and metabolism.
    Gandy S; Petanceska S
    Biochim Biophys Acta; 2000 Jul; 1502(1):44-52. PubMed ID: 10899430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ube3a deficiency inhibits amyloid plaque formation in APPswe/PS1δE9 mouse model of Alzheimer's disease.
    Singh BK; Vatsa N; Kumar V; Shekhar S; Sharma A; Jana NR
    Hum Mol Genet; 2017 Oct; 26(20):4042-4054. PubMed ID: 29016862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease.
    Qian M; Shen X; Wang H
    Cell Mol Neurobiol; 2016 May; 36(4):471-82. PubMed ID: 26119306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gleevec shifts APP processing from a β-cleavage to a nonamyloidogenic cleavage.
    Netzer WJ; Bettayeb K; Sinha SC; Flajolet M; Greengard P; Bustos V
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1389-1394. PubMed ID: 28115709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Alzheimer's β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation.
    Di Scala C; Chahinian H; Yahi N; Garmy N; Fantini J
    Biochemistry; 2014 Jul; 53(28):4489-502. PubMed ID: 25000142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of exosomes derived from cholesterol-accumulated astrocytes in Alzheimer's disease pathology.
    Wu Q; Cortez L; Kamali-Jamil R; Sim V; Wille H; Kar S
    Dis Model Mech; 2021 Oct; 14(10):. PubMed ID: 34524402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial import and degradation of amyloid-β peptide.
    Pinho CM; Teixeira PF; Glaser E
    Biochim Biophys Acta; 2014 Jul; 1837(7):1069-74. PubMed ID: 24561226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.