These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29325714)

  • 41. Characterization of SUMO-conjugating enzyme mutants in Schizosaccharomyces pombe identifies a dominant-negative allele that severely reduces SUMO conjugation.
    Ho JC; Watts FZ
    Biochem J; 2003 May; 372(Pt 1):97-104. PubMed ID: 12597774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hypoxia regulates sumoylation pathways in intervertebral disc cells: implications for hypoxic adaptations.
    Wang F; Cai F; Shi R; Wei JN; Wu XT
    Osteoarthritis Cartilage; 2016 Jun; 24(6):1113-24. PubMed ID: 26826302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation.
    Tatham MH; Kim S; Yu B; Jaffray E; Song J; Zheng J; Rodriguez MS; Hay RT; Chen Y
    Biochemistry; 2003 Aug; 42(33):9959-69. PubMed ID: 12924945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function.
    Ding X; Wang A; Ma X; Demarque M; Jin W; Xin H; Dejean A; Dong C
    Cell Rep; 2016 Jul; 16(4):1055-1066. PubMed ID: 27425617
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SUMO pathway components as possible cancer biomarkers.
    Mattoscio D; Chiocca S
    Future Oncol; 2015; 11(11):1599-610. PubMed ID: 26043214
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RING tetramerization is required for nuclear body biogenesis and PML sumoylation.
    Wang P; Benhenda S; Wu H; Lallemand-Breitenbach V; Zhen T; Jollivet F; Peres L; Li Y; Chen SJ; Chen Z; de Thé H; Meng G
    Nat Commun; 2018 Mar; 9(1):1277. PubMed ID: 29599493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Covalent conjugation of the equine infectious anemia virus Gag with SUMO.
    Wang J; Wen S; Zhao R; Qi J; Liu Z; Li W; An J; Wood C; Wang Y
    Biochem Biophys Res Commun; 2017 May; 486(3):712-719. PubMed ID: 28342872
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of cellular SUMO and SUMO-ubiquitin hybrid conjugates.
    Schnellhardt M; Uzunova K; Bade VN; Krause A; Weisshaar SR; Praefcke GJ; Dohmen RJ
    Methods Mol Biol; 2012; 832():81-92. PubMed ID: 22350877
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation.
    Jakobs A; Koehnke J; Himstedt F; Funk M; Korn B; Gaestel M; Niedenthal R
    Nat Methods; 2007 Mar; 4(3):245-50. PubMed ID: 17277783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis.
    Yu L; Ji W; Zhang H; Renda MJ; He Y; Lin S; Cheng EC; Chen H; Krause DS; Min W
    J Exp Med; 2010 Jun; 207(6):1183-95. PubMed ID: 20457756
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SUMO chains: polymeric signals.
    Vertegaal AC
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):46-9. PubMed ID: 20074033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection.
    Tatham MH; Kim S; Jaffray E; Song J; Chen Y; Hay RT
    Nat Struct Mol Biol; 2005 Jan; 12(1):67-74. PubMed ID: 15608651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SUMO-mimicking peptides inhibiting protein SUMOylation.
    Zhao B; Villhauer EB; Bhuripanyo K; Kiyokawa H; Schindelin H; Yin J
    Chembiochem; 2014 Dec; 15(18):2662-6. PubMed ID: 25412743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Performing in vitro sumoylation reactions using recombinant enzymes.
    Werner A; Moutty MC; Möller U; Melchior F
    Methods Mol Biol; 2009; 497():187-99. PubMed ID: 19107418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Abeta-induced presynaptic release of UBC9 through extracellular vesicles involves SNAP23.
    Long Y; Cheng Y; Yang J; Yang T; Lai Y
    Neurosci Lett; 2022 Aug; 785():136771. PubMed ID: 35792301
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation.
    Van Nguyen T; Angkasekwinai P; Dou H; Lin FM; Lu LS; Cheng J; Chin YE; Dong C; Yeh ET
    Mol Cell; 2012 Jan; 45(2):210-21. PubMed ID: 22284677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Emerging roles of the SUMO pathway in development.
    Lomelí H; Vázquez M
    Cell Mol Life Sci; 2011 Dec; 68(24):4045-64. PubMed ID: 21892772
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery of a Dual SENP1 and SENP2 Inhibitor.
    Brand M; Bommeli EB; Rütimann M; Lindenmann U; Riedl R
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assays for investigating deSUMOylation enzymes.
    Madu IG; Chen Y
    Curr Protoc Mol Biol; 2012 Jul; Chapter 10():Unit10.30. PubMed ID: 22870856
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The synaptic balance between sumoylation and desumoylation is maintained by the activation of metabotropic mGlu5 receptors.
    Schorova L; Pronot M; Poupon G; Prieto M; Folci A; Khayachi A; Brau F; Cassé F; Gwizdek C; Martin S
    Cell Mol Life Sci; 2019 Aug; 76(15):3019-3031. PubMed ID: 30904951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.