These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 29325887)
1. Stiffness and strength of cranioplastic implant systems in comparison to cranial bone. Persson J; Helgason B; Engqvist H; Ferguson SJ; Persson C J Craniomaxillofac Surg; 2018 Mar; 46(3):418-423. PubMed ID: 29325887 [TBL] [Abstract][Full Text] [Related]
2. On the mechanical behaviour of PEEK and HA cranial implants under impact loading. Garcia-Gonzalez D; Jayamohan J; Sotiropoulos SN; Yoon SH; Cook J; Siviour CR; Arias A; Jérusalem A J Mech Behav Biomed Mater; 2017 May; 69():342-354. PubMed ID: 28160738 [TBL] [Abstract][Full Text] [Related]
3. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants. Moiduddin K Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500 [TBL] [Abstract][Full Text] [Related]
4. Assessment of cranial reconstruction utilizing various implant materials: finite element study. Shash YH J Mater Sci Mater Med; 2024 Aug; 35(1):50. PubMed ID: 39136804 [TBL] [Abstract][Full Text] [Related]
5. Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants. El Halabi F; Rodriguez JF; Rebolledo L; Hurtós E; Doblaré M J Mech Behav Biomed Mater; 2011 Nov; 4(8):1819-32. PubMed ID: 22098881 [TBL] [Abstract][Full Text] [Related]
6. Homogenous scaffold-based cranial/skull implant modelling and structural analysis-unit cell algorithm-meshless approach. Phanindra Bogu V; Ravi Kumar Y; Kumar Khanra A Med Biol Eng Comput; 2017 Nov; 55(11):2053-2065. PubMed ID: 28474182 [TBL] [Abstract][Full Text] [Related]
7. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. Lethaus B; Safi Y; ter Laak-Poort M; Kloss-Brandstätter A; Banki F; Robbenmenke C; Steinseifer U; Kessler P J Neurotrauma; 2012 Apr; 29(6):1077-83. PubMed ID: 22017579 [TBL] [Abstract][Full Text] [Related]
8. Properties of an In Vivo Fractured Poly(Methyl Methacrylate) Cranioplasty After 15 Years. van de Vijfeijken SECM; Münker TJAG; de Jager N; Vandertop WP; Becking AG; Kleverlaan CJ; World Neurosurg; 2019 Mar; 123():e60-e68. PubMed ID: 30447447 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Patient-Specific Cranial Implant Design Using Finite Element Analysis. Huys SEF; Van Gysel A; Mommaerts MY; Sloten JV World Neurosurg; 2021 Apr; 148():198-204. PubMed ID: 33529765 [TBL] [Abstract][Full Text] [Related]
11. [Alumina ceramic (Bioceram) as the cranioplastic material--experimental study and application in cranioplasty]. Okumura T; Oda Y; Mori K; Uchida Y; Morimoto M; Kamimura Y; Seike M; Murata T; Arisawa M No Shinkei Geka; 1984 Mar; 12(3 Suppl):246-52. PubMed ID: 6462331 [TBL] [Abstract][Full Text] [Related]
12. [Features of modeling a polymer implant for closing a defect after decompressive craniotomy]. Okishev DN; Cherebylo SA; Konovalov AN; Chelushkin DM; Shekhtman OD; Konovalov NA; Okisheva EA; Kravchuk AD; Eliava SS Zh Vopr Neirokhir Im N N Burdenko; 2022; 86(1):17-27. PubMed ID: 35170273 [TBL] [Abstract][Full Text] [Related]
13. Implicit and explicit finite element models predict the mechanical response of calcium phosphate-titanium cranial implants. Lewin S; Fleps I; Neuhaus D; Öhman-Mägi C; Ferguson SJ; Persson C; Helgason B J Mech Behav Biomed Mater; 2020 Dec; 112():104085. PubMed ID: 33080431 [TBL] [Abstract][Full Text] [Related]
14. A technique for fabrication of cranial prostheses using high-temperature vulcanizing silicone material. Kharade P; Dholam K; Gorakh A J Prosthet Dent; 2017 Jul; 118(1):113-115. PubMed ID: 28024824 [TBL] [Abstract][Full Text] [Related]
15. Minimizing bone gaps when using custom pediatric cranial implants is associated with implant success. Bowers CA; McMullin JH; Brimley C; Etherington L; Siddiqi FA; Riva-Cambrin J J Neurosurg Pediatr; 2015 Oct; 16(4):439-44. PubMed ID: 26161719 [TBL] [Abstract][Full Text] [Related]
16. Spontaneous fractures in custom-made porous hydroxyapatite cranioplasty implants: is fragility the only culprit? Zanotti B; Verlicchi A; Indiani S; Scarparo SA; Zingaretti N; Parodi PC Acta Neurochir (Wien); 2015 Mar; 157(3):517-23. PubMed ID: 25588747 [TBL] [Abstract][Full Text] [Related]
17. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection. Posti JP; Piitulainen JM; Hupa L; Fagerlund S; Frantzén J; Aitasalo KMJ; Vuorinen V; Serlo W; Syrjänen S; Vallittu PK J Mech Behav Biomed Mater; 2015 Mar; 55():191-200. PubMed ID: 26594779 [TBL] [Abstract][Full Text] [Related]
18. Management of the Repeatedly Failed Cranioplasty Following Large Postdecompressive Craniectomy: Establishing the Efficacy of Staged Free Latissimus Dorsi Transfer/Tissue Expansion/Custom Polyetheretherketone Implant Reconstruction. Mundinger GS; Latham K; Friedrich J; Louie O; Said H; Birgfeld C; Ellenbogen R; Hopper RA J Craniofac Surg; 2016 Nov; 27(8):1971-1977. PubMed ID: 28005736 [TBL] [Abstract][Full Text] [Related]
19. Stiffness and inelastic deformation in acrylictitanium composite implant materials under compression. Schnur DS; Lee D J Biomed Mater Res; 1983 Nov; 17(6):973-91. PubMed ID: 6654934 [TBL] [Abstract][Full Text] [Related]
20. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. Thomas KA; Kay JF; Cook SD; Jarcho M J Biomed Mater Res; 1987 Dec; 21(12):1395-414. PubMed ID: 3429474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]