These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 29326054)

  • 1. Size-based separation methods of circulating tumor cells.
    Hao SJ; Wan Y; Xia YQ; Zou X; Zheng SY
    Adv Drug Deliv Rev; 2018 Feb; 125():3-20. PubMed ID: 29326054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?
    Murlidhar V; Rivera-Báez L; Nagrath S
    Small; 2016 Sep; 12(33):4450-63. PubMed ID: 27436104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchtop technologies for circulating tumor cells separation based on biophysical properties.
    Low WS; Wan Abas WA
    Biomed Res Int; 2015; 2015():239362. PubMed ID: 25977918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells.
    Lee Y; Guan G; Bhagat AA
    Cytometry A; 2018 Dec; 93(12):1251-1254. PubMed ID: 30080307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.
    Park ES; Duffy SP; Ma H
    Methods Mol Biol; 2017; 1634():21-32. PubMed ID: 28819838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer.
    Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B
    J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.
    Lee A; Park J; Lim M; Sunkara V; Kim SY; Kim GH; Kim MH; Cho YK
    Anal Chem; 2014 Nov; 86(22):11349-56. PubMed ID: 25317565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives.
    Gribko A; Künzel J; Wünsch D; Lu Q; Nagel SM; Knauer SK; Stauber RH; Ding GB
    Int J Nanomedicine; 2019; 14():4187-4209. PubMed ID: 31289440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.
    Gogoi P; Sepehri S; Chow W; Handique K; Wang Y
    Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells.
    Shi J; Zhao C; Shen M; Chen Z; Liu J; Zhang S; Zhang Z
    Biosens Bioelectron; 2022 Apr; 202():114025. PubMed ID: 35078145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Microfluidic Chip Platform for the Isolation of Versatile Circulating Tumor Cells.
    Chen H; Han Y; Li Q; Zou Y; Wang S; Jiao X
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37902316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic technologies for circulating tumor cell isolation.
    Cho H; Kim J; Song H; Sohn KY; Jeon M; Han KH
    Analyst; 2018 Jun; 143(13):2936-2970. PubMed ID: 29796523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole Blood at a Liquid-Liquid Interface.
    Kim TH; Lim M; Park J; Oh JM; Kim H; Jeong H; Lee SJ; Park HC; Jung S; Kim BC; Lee K; Kim MH; Park DY; Kim GH; Cho YK
    Anal Chem; 2017 Jan; 89(2):1155-1162. PubMed ID: 27958721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.
    Lin M; Chen JF; Lu YT; Zhang Y; Song J; Hou S; Ke Z; Tseng HR
    Acc Chem Res; 2014 Oct; 47(10):2941-50. PubMed ID: 25111636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Circulating Tumor Cells Using Microfluidics.
    Burinaru TA; Avram M; Avram A; Mărculescu C; Ţîncu B; Ţucureanu V; Matei A; Militaru M
    ACS Comb Sci; 2018 Mar; 20(3):107-126. PubMed ID: 29363937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-based enrichment technologies for CTC detection and characterization.
    Williams A; Balic M; Datar R; Cote R
    Recent Results Cancer Res; 2012; 195():87-95. PubMed ID: 22527497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges.
    Lianidou ES; Markou A
    Clin Chem; 2011 Sep; 57(9):1242-55. PubMed ID: 21784769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.