These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. Targeted Base Editing Systems Are Available for Plants. Marzec M; Hensel G Trends Plant Sci; 2018 Nov; 23(11):955-957. PubMed ID: 30224156 [TBL] [Abstract][Full Text] [Related]
84. CRISPR/Cas9: at the cutting edge of hepatology. Pankowicz FP; Jarrett KE; Lagor WR; Bissig KD Gut; 2017 Jul; 66(7):1329-1340. PubMed ID: 28487442 [TBL] [Abstract][Full Text] [Related]
85. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Manghwar H; Lindsey K; Zhang X; Jin S Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474 [TBL] [Abstract][Full Text] [Related]
86. Engineered CRISPR Systems for Next Generation Gene Therapies. Pineda M; Moghadam F; Ebrahimkhani MR; Kiani S ACS Synth Biol; 2017 Sep; 6(9):1614-1626. PubMed ID: 28558198 [TBL] [Abstract][Full Text] [Related]
87. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination. Peng H; Le C; Wu J; Li XF; Zhang H; Le XC ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826 [TBL] [Abstract][Full Text] [Related]
88. Refining CRISPR-based genome and epigenome editing off-targets. Luo Y Cell Biol Toxicol; 2019 Aug; 35(4):281-283. PubMed ID: 31227932 [No Abstract] [Full Text] [Related]
89. Editing and investigating genomes with TALE and CRISPR/Cas systems: applications of artificial TALE and CRISPR-Cas systems. Giovannangeli C; Concordet JP Methods; 2014 Sep; 69(2):119-20. PubMed ID: 25248487 [No Abstract] [Full Text] [Related]
90. Genome editing using CRISPR, CAST, and Fanzor systems. Song B; Bae S Mol Cells; 2024 Jul; 47(7):100086. PubMed ID: 38909984 [TBL] [Abstract][Full Text] [Related]
91. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612 [TBL] [Abstract][Full Text] [Related]
92. Beyond Native Cas9: Manipulating Genomic Information and Function. Mitsunobu H; Teramoto J; Nishida K; Kondo A Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220 [TBL] [Abstract][Full Text] [Related]
93. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice. Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613 [TBL] [Abstract][Full Text] [Related]
94. CRISPR/Cas9-mediated genome editing in sea urchins. Lin CY; Oulhen N; Wessel G; Su YH Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015 [TBL] [Abstract][Full Text] [Related]
95. Viral Delivery Systems for CRISPR. Xu CL; Ruan MZC; Mahajan VB; Tsang SH Viruses; 2019 Jan; 11(1):. PubMed ID: 30621179 [TBL] [Abstract][Full Text] [Related]
96. Meeting Report: German Genetics Society-Genome Editing with CRISPR. Maier LK; Marchfelder A; Randau L Bioessays; 2020 Feb; 42(2):e1900223. PubMed ID: 31853989 [No Abstract] [Full Text] [Related]
97. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans. Li W; Ou G Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570 [TBL] [Abstract][Full Text] [Related]
98. The impact of CRISPR-Cas9 on target identification and validation. Moore JD Drug Discov Today; 2015 Apr; 20(4):450-7. PubMed ID: 25572406 [TBL] [Abstract][Full Text] [Related]