BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 29326137)

  • 21. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.
    Dienel GA
    J Neurosci Res; 2017 Nov; 95(11):2103-2125. PubMed ID: 28151548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of monocarboxylate transporter 1 (SLC16A1) in the uptake of l-lactate in human astrocytes.
    Ideno M; Kobayashi M; Sasaki S; Futagi Y; Narumi K; Furugen A; Iseki K
    Life Sci; 2018 Jan; 192():110-114. PubMed ID: 29154783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunoreactivity of receptor and transporters for lactate located in astrocytes and epithelial cells of choroid plexus of human brain.
    Murakami R; Chiba Y; Nishi N; Matsumoto K; Wakamatsu K; Yanase K; Uemura N; Nonaka W; Ueno M
    Neurosci Lett; 2021 Jan; 741():135479. PubMed ID: 33212210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes.
    Castro MA; Pozo M; Cortés C; García Mde L; Concha II; Nualart F
    J Neurochem; 2007 Aug; 102(3):773-82. PubMed ID: 17630983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health?
    Baltan S
    Metab Brain Dis; 2015 Feb; 30(1):25-30. PubMed ID: 25034458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters.
    Jha MK; Morrison BM
    Exp Neurol; 2018 Nov; 309():23-31. PubMed ID: 30044944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle.
    Pellerin L; Pellegri G; Bittar PG; Charnay Y; Bouras C; Martin JL; Stella N; Magistretti PJ
    Dev Neurosci; 1998; 20(4-5):291-9. PubMed ID: 9778565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions--in silico study supported by in vitro expression data.
    Genc S; Kurnaz IA; Ozilgen M
    BMC Syst Biol; 2011 Oct; 5():162. PubMed ID: 21995951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity.
    Tekkök SB; Brown AM; Westenbroek R; Pellerin L; Ransom BR
    J Neurosci Res; 2005 Sep; 81(5):644-52. PubMed ID: 16015619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity.
    Pellerin L
    Diabetes Metab; 2010 Oct; 36 Suppl 3():S59-63. PubMed ID: 21211738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain.
    Ramírez BG; Rodrigues TB; Violante IR; Cruz F; Fonseca LL; Ballesteros P; Castro MM; García-Martín ML; Cerdán S
    J Neurosci Res; 2007 Nov; 85(15):3244-53. PubMed ID: 17600826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential metabolic adaptation to acute and long-term hypoxia in rat primary cortical astrocytes.
    Véga C; R Sachleben L; Gozal D; Gozal E
    J Neurochem; 2006 May; 97(3):872-83. PubMed ID: 16573648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain glucose transporters: implications for neurologic disease.
    Benarroch EE
    Neurology; 2014 Apr; 82(15):1374-9. PubMed ID: 24647029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of brain lactate in neuronal metabolism.
    Serres S; Bouyer JJ; Bezancon E; Canioni P; Merle M
    NMR Biomed; 2003; 16(6-7):430-9. PubMed ID: 14679505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lactate produced by glycogenolysis in astrocytes regulates memory processing.
    Newman LA; Korol DL; Gold PE
    PLoS One; 2011; 6(12):e28427. PubMed ID: 22180782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation.
    Rosafio K; Pellerin L
    Glia; 2014 Mar; 62(3):477-90. PubMed ID: 24375723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats.
    Thoren AE; Helps SC; Nilsson M; Sims NR
    J Neurochem; 2006 May; 97(4):968-78. PubMed ID: 16606370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle.
    Bergersen LH
    Neuroscience; 2007 Mar; 145(1):11-9. PubMed ID: 17218064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-brain neuronal MCT2 lactate transporter expression links metabolism to human brain structure and function.
    Medel V; Crossley N; Gajardo I; Muller E; Barros LF; Shine JM; Sierralta J
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2204619119. PubMed ID: 35939682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.