These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 2932625)

  • 1. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.
    Woo YR; Yoganathan AP
    Med Instrum; 1985; 19(5):224-31. PubMed ID: 2932625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An instrument for the measurement of in vitro velocity and turbulent shear stress in the immediate vicinity of prosthetic heart valves.
    Woo YR; Yoganathan AP
    Life Support Syst; 1986; 4(1):47-62. PubMed ID: 2937981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical aortic heart valve prostheses.
    Woo YR; Yoganathan AP
    Life Support Syst; 1985; 3(4):283-312. PubMed ID: 4068753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro pulsatile flow measurements in the vicinity of mechanical heart valves in the mitral flow chamber.
    Woo YR; Yoganathan AP
    Life Support Syst; 1986; 4(2):115-39. PubMed ID: 2943945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal stress analysis in LDA measurement of the flow field downstream of 19-mm Sorin Bicarbon heart valve.
    Barbaro V; Grigioni M; Daniele C; D'Avenio G
    Technol Health Care; 1998 Nov; 6(4):259-70. PubMed ID: 9924953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Heart Valve Dis; 2002 May; 11(3):392-401. PubMed ID: 12056734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro fluid dynamic characteristics of aortic bioprostheses: old versus new.
    Woo YR; Sung HW; Williams FP; Yoganathan AP
    Life Support Syst; 1986; 4(1):63-85. PubMed ID: 2937982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of magnetic resonance imaging and Laser Doppler Anemometry velocity measurements downstream of replacement heart valves: implications for in vivo assessment of prosthetic valve function.
    Fontaine AA; Heinrich RS; Walker PG; Pedersen EM; Scheidegger MB; Boesiger P; Walton SP; Yoganathan AP
    J Heart Valve Dis; 1996 Jan; 5(1):66-73. PubMed ID: 8834728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro velocity and turbulence measurements in the vicinity of three new mechanical aortic heart valve prostheses: Björk-Shiley Monostrut, Omni-Carbon, and Duromedics.
    Yoganathan AP; Sung HW; Woo YR; Jones M
    J Thorac Cardiovasc Surg; 1988 May; 95(5):929-39. PubMed ID: 3361941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.
    Ellis JT; Healy TM; Fontaine AA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):591-9. PubMed ID: 8953436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the hemodynamics of several prosthetic heart valves: in vitro study.
    Modi VJ; Akutsu T
    Monogr Atheroscler; 1990; 15():125-37. PubMed ID: 2296238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical mitral heart valve prostheses.
    Woo YR; Yoganathan AP
    J Biomech; 1986; 19(1):39-51. PubMed ID: 3949815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro hemodynamic characteristics of tissue bioprostheses in the aortic position.
    Yoganathan AP; Woo YR; Sung HW; Williams FP; Franch RH; Jones M
    J Thorac Cardiovasc Surg; 1986 Aug; 92(2):198-209. PubMed ID: 3736078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulent shear stresses from prosthetic heart valves.
    Tiederman WG; Steinle MJ; Phillips WM; Privette RM
    Trans Am Soc Artif Intern Organs; 1985; 31():479-82. PubMed ID: 3837493
    [No Abstract]   [Full Text] [Related]  

  • 16. Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses.
    Yoganathan AP; Woo YR; Sung HW
    J Biomech; 1986; 19(6):433-42. PubMed ID: 2943742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of oscillation on elevating shear stresses.
    Sakhaeimanesh AA
    J Med Eng Technol; 2008; 32(6):434-9. PubMed ID: 19005961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital particle image velocimetry (DPIV) measurements of the velocity profiles through bileaflet mechanical valves: in vitro steady.
    Shandas R; Kwon J
    Biomed Sci Instrum; 1996; 32():161-7. PubMed ID: 8672664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.