These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2932638)

  • 1. Control of myofibrillar ATPase activity and force in myodystrophic muscle.
    Mobley BA; Reddy YS; Feeback DL; Bodensteiner JB; Bokhari M; Robinson RD; Clark R
    Muscle Nerve; 1985 Feb; 8(2):93-8. PubMed ID: 2932638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ capacity and uptake rate in skinned fibers of myodystrophic muscle.
    Mobley BA
    Exp Neurol; 1985 Jan; 87(1):137-46. PubMed ID: 3155690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of 4-chloro-m-cresol and caffeine on skinned fibers from rat fast and slow skeletal muscles.
    Choisy S; Huchet-Cadiou C; Léoty C
    J Pharmacol Exp Ther; 2000 Sep; 294(3):884-93. PubMed ID: 10945837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of muscle spindles in slow and fast neonatal muscles of normal and dystrophic mice.
    Johnson MI; Ovalle WK
    Am J Anat; 1986 Apr; 175(4):413-27. PubMed ID: 2940857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.
    Callister RJ; Pierce PA; McDonagh JC; Stuart DG
    J Morphol; 2005 Apr; 264(1):62-74. PubMed ID: 15732049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force and ATPase rate in skinned skeletal muscle fibers.
    Kushmerick MJ; Krasner B
    Fed Proc; 1982 May; 41(7):2232-7. PubMed ID: 6210577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental corticosteroid myopathy: effect on myofibrillar ATPase activity and protein degradation.
    Clark AF; Vignos PJ
    Muscle Nerve; 1979; 2(4):265-73. PubMed ID: 158706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myofibrillar and membrane-bound enzymes in skeletal muscle from myodystrophic mice.
    Reddy YS; Reddy NB; Mobley BA; Beesley RC
    Int J Biochem; 1992 Apr; 24(4):579-84. PubMed ID: 1355451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium sensitivity of force production and myofibrillar ATPase activity in muscles from Thoroughbreds with recurrent exertional rhabdomyolysis.
    Mlekoday JA; Mickelson JR; Valberg SJ; Horton JH; Gallant EM; Thompson LV
    Am J Vet Res; 2001 Oct; 62(10):1647-52. PubMed ID: 11592334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca-ATPase, on skeletal muscles from normal and mdx mice.
    Divet A; Lompré AM; Huchet-Cadiou C
    Acta Physiol Scand; 2005 Jul; 184(3):173-86. PubMed ID: 15954985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca(2+)- and Sr(2+)-sensitive ATPase activity of slow skeletal myofibrils in comparison with fast skeletal and cardiac myofibrils.
    Kambara M
    Fukuoka Igaku Zasshi; 1994 Jan; 85(1):5-13. PubMed ID: 8163263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit.
    Potma EJ; van Graas IA; Stienen GJ
    Biophys J; 1994 Dec; 67(6):2404-10. PubMed ID: 7696480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training-induced increase in myofibrillar ATPase intermediate fibers in human skeletal muscle.
    Schantz P; Billeter R; Henriksson J; Jansson E
    Muscle Nerve; 1982 Oct; 5(8):628-36. PubMed ID: 6218405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The size of the myofibers in mature grafts of the mouse extensor digitorum longus muscle.
    Thomas D; Klueber K; Bourke D; Ontell M
    Muscle Nerve; 1984; 7(3):226-31. PubMed ID: 6708968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative histochemistry of three mouse hind-limb muscles: the relationship between calcium-stimulated myofibrillar ATPase and succinate dehydrogenase activities.
    van der Laarse WJ; Diegenbach PC; Maslam S
    Histochem J; 1984 May; 16(5):529-41. PubMed ID: 6234263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigations on the hypokinesis of skeletal muscles with different functions, VIII. Effect of plaster-cast immobilization on the contractile properties of rat skeletal muscles with different functions.
    Szöör A; Rapcsák M; Hollósi G
    Acta Biol Acad Sci Hung; 1981; 32(2):129-35. PubMed ID: 6460399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of the masseter and temporalis muscles following alteration in length, with or without surgical detachment.
    Maxwell LC; Carlson DS; McNamara JA; Faulkner JA
    Anat Rec; 1981 Jun; 200(2):127-37. PubMed ID: 6455941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of six methods for force normalization in muscles from malnourished rats.
    Nishio ML; Madapallimattam AG; Jeejeebhoy KN
    Med Sci Sports Exerc; 1992 Feb; 24(2):259-64. PubMed ID: 1549017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Congenital desproportion of various types of muscle fiber, with relative small size of type I fibers. Morphological documents on muscle biopsies in 3 members of the same family].
    Fardeau M; Harpey JP; Caille B
    Rev Neurol (Paris); 1975 Nov; 131(11):745-66. PubMed ID: 130671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.