These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29326580)

  • 1. The Passive Series Stiffness That Optimizes Torque Tracking for a Lower-Limb Exoskeleton in Human Walking.
    Zhang J; Collins SH
    Front Neurorobot; 2017; 11():68. PubMed ID: 29326580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Iterative Learning Gain That Optimizes Real-Time Torque Tracking for Ankle Exoskeletons in Human Walking Under Gait Variations.
    Zhang J; Collins SH
    Front Neurorobot; 2021; 15():653409. PubMed ID: 34122032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Stiffness-based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance.
    Huang TH; Zhang S; Yu S; MacLean MK; Zhu J; Lallo AD; Jiao C; Bulea TC; Zheng M; Su H
    IEEE Trans Robot; 2022 Jun; 38(3):1442-1459. PubMed ID: 36338603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
    Chen T; Casas R; Lum PS
    IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton with High Backdrivability and High Bandwidth.
    Yu S; Huang TH; Yang X; Jiao C; Yang J; Chen Y; Yi J; Su H
    IEEE ASME Trans Mechatron; 2020; 25(4):1794-1802. PubMed ID: 33746504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.
    Shepherd MK; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2375-2386. PubMed ID: 28885156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closing the Loop on Exoskeleton Motor Controllers: Benefits of Regression-Based Open-Loop Control.
    Orekhov G; Luque J; Lerner ZF
    IEEE Robot Autom Lett; 2020 Oct; 5(4):6025-6032. PubMed ID: 33748415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of maximal ankle dorsiflexion angle and passive resistive torque to passive-elastic stiffness of ankle dorsiflexion stretch.
    Gajdosik RL; Williams AK
    Percept Mot Skills; 2002 Aug; 95(1):323-5. PubMed ID: 12365271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Walking Economy With an Ankle Exoskeleton Prior to Human-in-the-Loop Optimization.
    Wang W; Chen J; Ding J; Zhang J; Liu J
    Front Neurorobot; 2021; 15():797147. PubMed ID: 35082609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
    Li Z; Ma W; Yin Z; Guo H
    ISA Trans; 2017 Nov; 71(Pt 2):458-466. PubMed ID: 28823408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The difference between stiffness and quasi-stiffness in the context of biomechanical modeling.
    Rouse EJ; Gregg RD; Hargrove LJ; Sensinger JW
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):562-8. PubMed ID: 23212310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients.
    Mo L; Feng P; Shao Y; Shi D; Ju L; Zhang W; Ding X
    Front Robot AI; 2022; 9():864684. PubMed ID: 35585837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between passive ankle plantar flexion joint torque and gastrocnemius muscle and achilles tendon stiffness: implications for flexibility.
    Kawakami Y; Kanehisa H; Fukunaga T
    J Orthop Sports Phys Ther; 2008 May; 38(5):269-76. PubMed ID: 18448880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.
    Kim S; Son Y; Choi S; Ham S; Park C
    Rev Sci Instrum; 2015 Sep; 86(9):095107. PubMed ID: 26429480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.