These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 29327073)

  • 21. INVOLVEMENT OF INDOLE-3-ACETIC ACID PRODUCED BY THE GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM SPP. IN PROMOTING GROWTH OF CHLORELLA VULGARIS(1).
    De-Bashan LE; Antoun H; Bashan Y
    J Phycol; 2008 Aug; 44(4):938-47. PubMed ID: 27041612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide.
    Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y
    Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones.
    Salama ES; Kabra AN; Ji MK; Kim JR; Min B; Jeon BH
    Bioresour Technol; 2014 Nov; 172():97-103. PubMed ID: 25247249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense.
    de-Bashan LE; Moreno M; Hernandez JP; Bashan Y
    Water Res; 2002 Jul; 36(12):2941-8. PubMed ID: 12171390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology.
    Wang X; Bao K; Cao W; Zhao Y; Hu CW
    Sci Rep; 2017 Jul; 7(1):5426. PubMed ID: 28710391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus.
    Amavizca E; Bashan Y; Ryu CM; Farag MA; Bebout BM; de-Bashan LE
    Sci Rep; 2017 Feb; 7():41310. PubMed ID: 28145473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense.
    Gonzalez LE; Bashan Y
    Appl Environ Microbiol; 2000 Apr; 66(4):1527-31. PubMed ID: 10742237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense.
    de-Bashan LE; Bashan Y; Moreno M; Lebsky VK; Bustillos JJ
    Can J Microbiol; 2002 Jun; 48(6):514-21. PubMed ID: 12166678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Insights from quantum chemistry.
    Zakharova EA; Shcherbakov AA; Brudnik VV; Skripko NG; Bulkhin NSh; Ignatov VV
    Eur J Biochem; 1999 Feb; 259(3):572-6. PubMed ID: 10092839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled.
    Ona O; Van Impe J; Prinsen E; Vanderleyden J
    FEMS Microbiol Lett; 2005 May; 246(1):125-32. PubMed ID: 15869971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency of CO2 fixation by microalgae in a closed raceway pond.
    Li S; Luo S; Guo R
    Bioresour Technol; 2013 May; 136():267-72. PubMed ID: 23567690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus.
    Hu C; Luo Q; Huang Q
    Environ Toxicol Chem; 2014 May; 33(5):1129-34. PubMed ID: 24464740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.
    Koul V; Tripathi C; Adholeya A; Kochar M
    Res Microbiol; 2015 Apr; 166(3):174-85. PubMed ID: 25700632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].
    Leyva LA; Bashan Y; Mendoza A; de-Bashan LE
    Naturwissenschaften; 2014 Oct; 101(10):819-30. PubMed ID: 25129521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production.
    Arbib Z; Ruiz J; Álvarez-Díaz P; Garrido-Pérez C; Perales JA
    Water Res; 2014 Feb; 49():465-74. PubMed ID: 24268718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.
    Luangpipat T; Chisti Y
    J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of phytohormone on Chlorella vulgaris grown in wastewater-flue gas: C/N/S fixation, wastewater treatment and metabolome analysis.
    Kong W; Shi S; Peng D; Feng S; Xu L; Wang X; Shen B; Bi Y; Lyu H
    Chemosphere; 2023 Dec; 345():140398. PubMed ID: 37844705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense : Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense.
    Palacios OA; Espinoza-Hicks JC; Camacho-Dávila AA; López BR; de-Bashan LE
    Microb Ecol; 2023 May; 85(4):1412-1422. PubMed ID: 35524818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels.
    Tang D; Han W; Li P; Miao X; Zhong J
    Bioresour Technol; 2011 Feb; 102(3):3071-6. PubMed ID: 21041075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.