These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29327266)

  • 1. Social targets improve body-based and environment-based strategies during spatial navigation.
    Kuehn E; Chen X; Geise P; Oltmer J; Wolbers T
    Exp Brain Res; 2018 Mar; 236(3):755-764. PubMed ID: 29327266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies.
    Spriggs MJ; Kirk IJ; Skelton RW
    Behav Brain Res; 2018 Feb; 339():195-206. PubMed ID: 29203335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging and spatial cues influence the updating of navigational memories.
    Merhav M; Wolbers T
    Sci Rep; 2019 Aug; 9(1):11469. PubMed ID: 31391574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal combination of environmental cues and path integration during navigation.
    Sjolund LA; Kelly JW; McNamara TP
    Mem Cognit; 2018 Jan; 46(1):89-99. PubMed ID: 28828745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.
    Wegman J; Tyborowska A; Janzen G
    Hippocampus; 2014 Jul; 24(7):853-68. PubMed ID: 24706395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related preference for geometric spatial cues during real-world navigation.
    Bécu M; Sheynikhovich D; Tatur G; Agathos CP; Bologna LL; Sahel JA; Arleo A
    Nat Hum Behav; 2020 Jan; 4(1):88-99. PubMed ID: 31548677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are visual cues helpful for virtual spatial navigation and spatial memory in patients with mild cognitive impairment or Alzheimer's disease?
    Cogné M; Auriacombe S; Vasa L; Tison F; Klinger E; Sauzéon H; Joseph PA; N Kaoua B
    Neuropsychology; 2018 May; 32(4):385-400. PubMed ID: 29809030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial reorientation with non-visual cues: Failure to spontaneously use auditory information.
    Nardi D; Anzures BJ; Clark JM; Griffith BV
    Q J Exp Psychol (Hove); 2019 May; 72(5):1141-1154. PubMed ID: 29776317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective resetting position and heading estimations while driving in a large-scale immersive virtual environment.
    Zhang L; Mou W
    Exp Brain Res; 2019 Feb; 237(2):335-350. PubMed ID: 30406817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does spatial cognitive style affect how navigational strategy is planned?
    Bocchi A; Palmiero M; Nori R; Verde P; Piccardi L
    Exp Brain Res; 2019 Oct; 237(10):2523-2533. PubMed ID: 31332472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG correlates of spatial orientation in the human retrosplenial complex.
    Lin CT; Chiu TC; Gramann K
    Neuroimage; 2015 Oct; 120():123-32. PubMed ID: 26163801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restructuring the navigational field: individual predisposition towards field independence predicts preferred navigational strategy.
    Boccia M; Piccardi L; D'Alessandro A; Nori R; Guariglia C
    Exp Brain Res; 2017 Jun; 235(6):1741-1748. PubMed ID: 28283695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis.
    Qiu Y; Wu Y; Liu R; Wang J; Huang H; Huang R
    Neurosci Biobehav Rev; 2019 Aug; 103():60-72. PubMed ID: 31201830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Differences in Hippocampal and Entorhinal Gray Matter Volume Support Individual Differences in First Person Navigational Ability.
    Sherrill KR; Chrastil ER; Aselcioglu I; Hasselmo ME; Stern CE
    Neuroscience; 2018 Jun; 380():123-131. PubMed ID: 29673867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Egocentric and allocentric navigation strategies in Williams syndrome and typical development.
    Broadbent HJ; Farran EK; Tolmie A
    Dev Sci; 2014 Nov; 17(6):920-34. PubMed ID: 24702907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of the Encoding Modality on Spatial Navigation for Sighted and Late-Blind People.
    Santoro I; Murgia M; Sors F; Agostini T
    Multisens Res; 2020 Mar; 33(4-5):505-520. PubMed ID: 31648190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The developmental trajectory of intramaze and extramaze landmark biases in spatial navigation: An unexpected journey.
    Buckley MG; Haselgrove M; Smith AD
    Dev Psychol; 2015 Jun; 51(6):771-91. PubMed ID: 25844850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passively learned spatial navigation cues evoke reinforcement learning reward signals.
    Ferguson TD; Williams CC; Skelton RW; Krigolson OE
    Cognition; 2019 Aug; 189():65-75. PubMed ID: 30927659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.