These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29327266)

  • 21. Passively learned spatial navigation cues evoke reinforcement learning reward signals.
    Ferguson TD; Williams CC; Skelton RW; Krigolson OE
    Cognition; 2019 Aug; 189():65-75. PubMed ID: 30927659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The postrhinal cortex is not necessary for landmark control in rat head direction cells.
    Peck JR; Taube JS
    Hippocampus; 2017 Feb; 27(2):156-168. PubMed ID: 27860052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of navigation may be influenced by retrosplenial cortex-mediated learning of landmark stability.
    Auger SD; Zeidman P; Maguire EA
    Neuropsychologia; 2017 Sep; 104():102-112. PubMed ID: 28802770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal features of spatial knowledge: Representing order and duration of topographical information.
    Teghil A; Boccia M; Bonavita A; Guariglia C
    Behav Brain Res; 2019 Dec; 376():112218. PubMed ID: 31499091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion of the serotonin receptor type 7 disrupts the acquisition of allocentric but not egocentric navigation strategies in mice.
    Beaudet G; Jozet-Alves C; Asselot R; Schumann-Bard P; Freret T; Boulouard M; Paizanis E
    Behav Brain Res; 2017 Mar; 320():179-185. PubMed ID: 27939340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dynamics of memory consolidation of landmarks.
    van Ekert J; Wegman J; Jansen C; Takashima A; Janzen G
    Hippocampus; 2017 Apr; 27(4):393-404. PubMed ID: 28032685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced spatial navigation skills in sequence-space synesthetes.
    van Petersen E; Altgassen M; van Lier R; van Leeuwen TM
    Cortex; 2020 Sep; 130():49-63. PubMed ID: 32640374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective neural coding of object, feature, and geometry spatial cues in humans.
    Ramanoël S; Durteste M; Bizeul A; Ozier-Lafontaine A; Bécu M; Sahel JA; Habas C; Arleo A
    Hum Brain Mapp; 2022 Dec; 43(17):5281-5295. PubMed ID: 35776524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.
    van Gerven DJH; Ferguson T; Skelton RW
    Neurobiol Learn Mem; 2016 Jul; 132():29-39. PubMed ID: 27174311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Landmark-based spatial navigation across the human lifespan.
    Bécu M; Sheynikhovich D; Ramanoël S; Tatur G; Ozier-Lafontaine A; Authié CN; Sahel JA; Arleo A
    Elife; 2023 Mar; 12():. PubMed ID: 36912888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. East is not right: Spatial compatibility differs between egocentric and cardinal retrieval.
    Wang Q; Taylor HA; Brunyé TT
    Q J Exp Psychol (Hove); 2019 May; 72(5):1250-1279. PubMed ID: 29966492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How different spatial representations interact in virtual environments: the role of mental frame syncing.
    Serino S; Riva G
    Cogn Process; 2015 May; 16(2):191-201. PubMed ID: 25663561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are you sure the library is that way? Metacognitive monitoring of spatial judgments.
    Stevens CA; Carlson RA
    J Exp Psychol Learn Mem Cogn; 2016 Jul; 42(7):1034-49. PubMed ID: 26866660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between gaze-centered and allocentric representations of reach target location in the presence of spatial updating.
    Byrne PA; Cappadocia DC; Crawford JD
    Vision Res; 2010 Dec; 50(24):2661-70. PubMed ID: 20816887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gender differences in spatial navigation: Characterizing wayfinding behaviors.
    Munion AK; Stefanucci JK; Rovira E; Squire P; Hendricks M
    Psychon Bull Rev; 2019 Dec; 26(6):1933-1940. PubMed ID: 31432331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can ongoing movements be guided by allocentric visual information when the target is visible?
    Crowe EM; Bossard M; Brenner E
    J Vis; 2021 Jan; 21(1):6. PubMed ID: 33427872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interindividual differences influence multisensory processing during spatial navigation.
    Zanchi S; Cuturi LF; Sandini G; Gori M
    J Exp Psychol Hum Percept Perform; 2022 Feb; 48(2):174-189. PubMed ID: 35225632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. No Sex or Age Difference in Dead-Reckoning Ability among Tsimane Forager-Horticulturalists.
    Trumble BC; Gaulin SJ; Dunbar MD; Kaplan H; Gurven M
    Hum Nat; 2016 Mar; 27(1):51-67. PubMed ID: 26590826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.
    Jandl NM; Sprenger A; Wojak JF; Göttlich M; Münte TF; Krämer UM; Helmchen C
    Neuroscience; 2015 Oct; 305():257-67. PubMed ID: 26255675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.