These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29327726)

  • 1. Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing.
    Yao X; Liu Z; Wang X; Wang Y; Nie YH; Lai L; Sun R; Shi L; Sun Q; Yang H
    Cell Res; 2018 Mar; 28(3):379-382. PubMed ID: 29327726
    [No Abstract]   [Full Text] [Related]  

  • 2. Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination.
    Cui Y; Niu Y; Zhou J; Chen Y; Cheng Y; Li S; Ai Z; Chu C; Wang H; Zheng B; Chen X; Sha J; Guo X; Huang X; Ji W
    Cell Res; 2018 Mar; 28(3):383-386. PubMed ID: 29327727
    [No Abstract]   [Full Text] [Related]  

  • 3. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases.
    Chu C; Yang Z; Yang J; Yan L; Si C; Kang Y; Chen Z; Chen Y; Ji W; Niu Y
    BMC Biotechnol; 2019 Jan; 19(1):7. PubMed ID: 30646876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system.
    Zhao P; Zhang Z; Ke H; Yue Y; Xue D
    Cell Res; 2014 Feb; 24(2):247-50. PubMed ID: 24418757
    [No Abstract]   [Full Text] [Related]  

  • 6. Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing.
    Kumita W; Sato K; Suzuki Y; Kurotaki Y; Harada T; Zhou Y; Kishi N; Sato K; Aiba A; Sakakibara Y; Feng G; Okano H; Sasaki E
    Sci Rep; 2019 Sep; 9(1):12719. PubMed ID: 31481684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing of Monkey.
    Liu Z; Cai Y; Sun Q
    Methods Mol Biol; 2017; 1630():141-152. PubMed ID: 28643256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Genetically Modified Mice Using CRISPR/Cas9.
    Muñoz-Santos D; Montoliu L; Fernández A
    Methods Mol Biol; 2020; 2110():129-138. PubMed ID: 32002906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Functional Genetic Study Models in Zebrafish Using CRISPR-Cas9.
    Carmona-Aldana F; Nuñez-Martinez HN; Peralta-Alvarez CA; Tapia-Urzua G; Recillas-Targa F
    Methods Mol Biol; 2021; 2174():255-262. PubMed ID: 32813255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas: A Successful Tool for Genome Editing in Animal Models.
    Ahmed B; Arif M; Qadir MI
    Crit Rev Eukaryot Gene Expr; 2020; 30(3):239-243. PubMed ID: 32749110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos.
    Schmidt JK; Strelchenko N; Park MA; Kim YH; Mean KD; Schotzko ML; Kang HJ; Golos TG; Slukvin II
    Sci Rep; 2020 Oct; 10(1):18457. PubMed ID: 33116147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of CRISPR/Cas9 for the Modification of the Mouse Genome.
    Klimke A; Güttler S; Kuballa P; Janzen S; Ortmann S; Flora A
    Methods Mol Biol; 2019; 1953():213-230. PubMed ID: 30912024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research.
    Zhang J; Khazalwa EM; Abkallo HM; Zhou Y; Nie X; Ruan J; Zhao C; Wang J; Xu J; Li X; Zhao S; Zuo E; Steinaa L; Xie S
    J Genet Genomics; 2021 May; 48(5):347-360. PubMed ID: 34144928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system.
    Wan H; Feng C; Teng F; Yang S; Hu B; Niu Y; Xiang AP; Fang W; Ji W; Li W; Zhao X; Zhou Q
    Cell Res; 2015 Feb; 25(2):258-61. PubMed ID: 25430965
    [No Abstract]   [Full Text] [Related]  

  • 20. Generation of Mouse Model (KI and CKO) via Easi-CRISPR.
    Shola DTN; Yang C; Han C; Norinsky R; Peraza RD
    Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.