BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29328048)

  • 21. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.
    Ahmad M; Balter P; Pan T
    Med Phys; 2011 Oct; 38(10):5646-56. PubMed ID: 21992381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motion compensated cone-beam CT reconstruction using an
    Lauria M; Miller C; Singhrao K; Lewis J; Lin W; O'Connell D; Naumann L; Stiehl B; Santhanam A; Boyle P; Raldow AC; Goldin J; Barjaktarevic I; Low DA
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38452385
    [No Abstract]   [Full Text] [Related]  

  • 23. High-quality four-dimensional cone-beam CT by deforming prior images.
    Wang J; Gu X
    Phys Med Biol; 2013 Jan; 58(2):231-46. PubMed ID: 23257113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections.
    Zhang Y; Yin FF; Segars WP; Ren L
    Med Phys; 2013 Dec; 40(12):121701. PubMed ID: 24320487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.
    Yan H; Zhen X; Folkerts M; Li Y; Pan T; Cervino L; Jiang SB; Jia X
    Med Phys; 2014 Jul; 41(7):071903. PubMed ID: 24989381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration.
    Riblett MJ; Christensen GE; Weiss E; Hugo GD
    Med Phys; 2018 Oct; 45(10):4471-4482. PubMed ID: 30118177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy.
    Zhang Y; Yin FF; Zhang Y; Ren L
    Phys Med Biol; 2017 May; 62(9):3859-3882. PubMed ID: 28338470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time respiratory triggered four dimensional cone-beam CT halves imaging dose compared to conventional 4D CBCT.
    Cooper BJ; O'Brien RT; Shieh CC; Keall PJ
    Phys Med Biol; 2019 Mar; 64(7):07NT01. PubMed ID: 30754038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic cone-beam CT reconstruction using spatial and temporal implicit neural representation learning (STINR).
    Zhang Y; Shao HC; Pan T; Mengke T
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36638543
    [No Abstract]   [Full Text] [Related]  

  • 30. Motion-map constrained image reconstruction (MCIR): application to four-dimensional cone-beam computed tomography.
    Park JC; Kim JS; Park SH; Liu Z; Song B; Song WY
    Med Phys; 2013 Dec; 40(12):121710. PubMed ID: 24320496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The adaptation and investigation of cone-beam CT reconstruction algorithms for horizontal rotation fixed-gantry scans of rabbits.
    Gardner M; Dillon O; Shieh CC; O'Brien R; Debrot E; Barber J; Ahern V; Bennett P; Heng SM; Corde S; Jackson M; Keall P
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33878747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. McSART: an iterative model-based, motion-compensated SART algorithm for CBCT reconstruction.
    Chee G; O'Connell D; Yang YM; Singhrao K; Low DA; Lewis JH
    Phys Med Biol; 2019 Apr; 64(9):095013. PubMed ID: 30776788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directional interpolation for motion weighted 4D cone-beam CT reconstruction.
    Zhang H; Sonke JJ
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):181-8. PubMed ID: 23285550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 4D cone-beam computed tomography (CBCT) using a moving blocker for simultaneous radiation dose reduction and scatter correction.
    Zhao C; Zhong Y; Duan X; Zhang Y; Huang X; Wang J; Jin M
    Phys Med Biol; 2018 May; 63(11):115007. PubMed ID: 29722297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Difference in performance between 3D and 4D CBCT for lung imaging: a dose and image quality analysis.
    Thengumpallil S; Smith K; Monnin P; Bourhis J; Bochud F; Moeckli R
    J Appl Clin Med Phys; 2016 Nov; 17(6):97-106. PubMed ID: 27929485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Four-dimensional inverse-geometry computed tomography: a preliminary study.
    Kim KH; Shin DS; Kang SW; Kang SH; Kim TH; Chung JB; Suh TS; Kim DS
    Phys Med Biol; 2021 Mar; 66(6):065028. PubMed ID: 33631733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrafraction 4D-cone beam CT acquired during volumetric arc radiotherapy delivery: kV parameter optimization and 4D motion accuracy for lung stereotactic body radiotherapy (SBRT) patients.
    Liang J; Lack D; Zhou J; Liu Q; Grills I; Yan D
    J Appl Clin Med Phys; 2019 Dec; 20(12):10-24. PubMed ID: 31675150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing liver tumor localization accuracy by prior-knowledge-guided motion modeling and a biomechanical model.
    Zhang Y; Folkert MR; Huang X; Ren L; Meyer J; Tehrani JN; Reynolds R; Wang J
    Quant Imaging Med Surg; 2019 Jul; 9(7):1337-1349. PubMed ID: 31448218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.