These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29328119)

  • 1. Standoff ultracompact micro-Raman sensor for planetary surface explorations.
    Abedin MN; Bradley AT; Misra AK; Bai Y; Hines GD; Sharma SK
    Appl Opt; 2018 Jan; 57(1):62-68. PubMed ID: 29328119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote Raman measurements of minerals, organics, and inorganics at 430  m range.
    Acosta-Maeda TE; Misra AK; Muzangwa LG; Berlanga G; Muchow D; Porter J; Sharma SK
    Appl Opt; 2016 Dec; 55(36):10283-10289. PubMed ID: 28059247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Standoff Biofinder" for Fast, Noncontact, Nondestructive, Large-Area Detection of Biological Materials for Planetary Exploration.
    Misra AK; Acosta-Maeda TE; Sharma SK; McKay CP; Gasda PJ; Taylor GJ; Lucey PG; Flynn L; Abedin MN; Clegg SM; Wiens R
    Astrobiology; 2016 Sep; 16(9):715-29. PubMed ID: 27623200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse.
    Misra AK; Sharma SK; Lucey PG
    Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The Research of Spatial Heterodyne Raman Spectroscopy with Standoff Detection].
    Hu GX; Xiong W; Luo HY; Shi HL; Li ZW; Shen J; Fang XJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):3951-7. PubMed ID: 30235500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OrganiCam: a lightweight time-resolved laser-induced luminescence imager and Raman spectrometer for planetary organic material characterization.
    Gasda PJ; Wiens RC; Reyes-Newell A; Ganguly K; Newell RT; Peterson C; Sandoval B; Ott L; Adikari S; Voit S; Clegg SM; Misra AK; Acosta-Maeda TE; Quinn H; Sharma SK; Dale M; Love SP; Maurice S
    Appl Opt; 2021 May; 60(13):3753-3763. PubMed ID: 33983308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Minerals and Organics Relevant to Planetary Exploration Using a Compact Portable Remote Raman System at 122 Meters.
    Sandford MW; Misra AK; Acosta-Maeda TE; Sharma SK; Porter JN; Egan MJ; Abedin MN
    Appl Spectrosc; 2021 Mar; 75(3):299-306. PubMed ID: 32613858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Two Components Approach for Long Range Remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy Using Low Laser Pulse Energy.
    Misra AK; Acosta-Maeda TE; Porter JN; Berlanga G; Muchow D; Sharma SK; Chee B
    Appl Spectrosc; 2019 Mar; 73(3):320-328. PubMed ID: 30347998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next generation laser-based standoff spectroscopy techniques for Mars exploration.
    Gasda PJ; Acosta-Maeda TE; Lucey PG; Misra AK; Sharma SK; Taylor GJ
    Appl Spectrosc; 2015; 69(2):173-92. PubMed ID: 25587811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralogy and astrobiology detection using laser remote sensing instrument.
    Abedin MN; Bradley AT; Sharma SK; Misra AK; Lucey PG; McKay CP; Ismail S; Sandford SP
    Appl Opt; 2015 Sep; 54(25):7598-611. PubMed ID: 26368883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.
    Sharma SK; Misra AK; Lucey PG; Lentz RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stand-off Raman spectroscopic detection of minerals on planetary surfaces.
    Sharma SK; Lucey PG; Ghosh M; Hubble HW; Horton KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2391-407. PubMed ID: 12909150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy.
    Clegg SM; Wiens R; Misra AK; Sharma SK; Lambert J; Bender S; Newell R; Nowak-Lovato K; Smrekar S; Dyar MD; Maurice S
    Appl Spectrosc; 2014; 68(9):925-36. PubMed ID: 25226246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote Raman spectroscopy for planetary exploration: a review.
    Angel SM; Gomer NR; Sharma SK; McKay C
    Appl Spectrosc; 2012 Feb; 66(2):137-50. PubMed ID: 22449277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection.
    Bykov SV; Asher SA
    Appl Spectrosc; 2024 Feb; 78(2):227-242. PubMed ID: 38204400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature high-speed, low-pulse-energy picosecond Raman spectrometer for identification of minerals and organics in planetary science.
    Blacksberg J; Alerstam E; Cochrane CJ; Maruyama Y; Farmer JD
    Appl Opt; 2020 Jan; 59(2):433-444. PubMed ID: 32225324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved Raman spectroscopy for in situ planetary mineralogy.
    Blacksberg J; Rossman GR; Gleckler A
    Appl Opt; 2010 Sep; 49(26):4951-62. PubMed ID: 20830184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.