These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29328135)

  • 21. High-performance autostereoscopic display based on the lenticular tracking method.
    Huang T; Han B; Zhang X; Liao H
    Opt Express; 2019 Jul; 27(15):20421-20434. PubMed ID: 31510136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffraction effects incorporated design of a parallax barrier for a high-density multi-view autostereoscopic 3D display.
    Yoon KH; Ju H; Kwon H; Park I; Kim SK
    Opt Express; 2016 Feb; 24(4):4057-75. PubMed ID: 26907057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays.
    Teng D; Xiong Y; Liu L; Wang B
    Opt Express; 2015 Mar; 23(5):6007-19. PubMed ID: 25836825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autostereoscopic three-dimensional display based on two parallax barriers.
    Luo JY; Wang QH; Zhao WX; Li DH
    Appl Opt; 2011 Jun; 50(18):2911-5. PubMed ID: 21691355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of the optical characteristics of autostereoscopic displays that have an aspherical lens array with a slanted angle.
    Jung SM; Kang IB
    Appl Opt; 2014 Feb; 53(5):868-77. PubMed ID: 24663265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Addressable spatial light modulators for eye-tracking autostereoscopic three-dimensional display using a scanning laser.
    Zhuang Z; Zhang L; Surman P; Song W; Thibault S; Sun XW; Zheng Y
    Appl Opt; 2018 Jun; 57(16):4457-4466. PubMed ID: 29877393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and evaluation of a large-scale autostereoscopic multi-view laser display for outdoor applications.
    Reitterer J; Fidler F; Schmid G; Riel T; Hambeck C; Saint Julien-Wallsee F; Leeb W; Schmid U
    Opt Express; 2014 Nov; 22(22):27063-8. PubMed ID: 25401856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction.
    Yang L; Sang X; Yu X; Liu B; Yan B; Wang K; Yu C
    Opt Express; 2018 Dec; 26(26):34412-34427. PubMed ID: 30650863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and fabrication of optical system for time-multiplex autostereoscopic display.
    Liou JC; Chen FH
    Opt Express; 2011 Jun; 19(12):11007-17. PubMed ID: 21716330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motion parallax and lossless resolution autostereoscopic 3D display based on a binocular viewpoint tracking liquid crystal dynamic grating adaptive screen.
    Meng Y; Lyu Y; Chen LL; Yu Z; Liao H
    Opt Express; 2021 Oct; 29(22):35456-35473. PubMed ID: 34808979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration.
    Fan Z; Chen G; Xia Y; Huang T; Liao H
    J Opt Soc Am A Opt Image Sci Vis; 2017 May; 34(5):804-812. PubMed ID: 28463324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viewing-distance aware super-resolution for high-definition display.
    Shen CT; Liu HH; Yang MH; Hung YP; Pei SC
    IEEE Trans Image Process; 2015 Jan; 24(1):403-18. PubMed ID: 25438313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motion and viewing analysis during minimally invasive surgery for autostereoscopic visualization.
    Vörös V; Page AS; Deprest J; Kimpe T; Poorten EV
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):527-535. PubMed ID: 36136179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autostereoscopic three-dimensional display based on a micromirror array.
    Yan J; Kowel ST; Cho HJ; Ahn CH; Nordin GP; Kulick JH
    Appl Opt; 2004 Jun; 43(18):3686-96. PubMed ID: 15218609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional electro-floating display system using an integral imaging method.
    Min SW; Hahn M; Kim J; Lee B
    Opt Express; 2005 Jun; 13(12):4358-69. PubMed ID: 19495351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.
    Lee CK; Park SG; Moon S; Lee B
    Opt Express; 2016 Apr; 24(8):8458-70. PubMed ID: 27137284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 162-inch 3D light field display based on aspheric lens array and holographic functional screen.
    Yang S; Sang X; Yu X; Gao X; Liu L; Liu B; Yang L
    Opt Express; 2018 Dec; 26(25):33013-33021. PubMed ID: 30645459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TransCAIP: A Live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters.
    Taguchi Y; Koike T; Takahashi K; Naemura T
    IEEE Trans Vis Comput Graph; 2009; 15(5):841-52. PubMed ID: 19590109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of a head-mounted display on the oculomotor system of children.
    Kozulin P; Ames SL; McBrien NA
    Optom Vis Sci; 2009 Jul; 86(7):845-56. PubMed ID: 19543140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent progress in see-through three-dimensional displays using holographic optical elements [Invited].
    Jang C; Lee CK; Jeong J; Li G; Lee S; Yeom J; Hong K; Lee B
    Appl Opt; 2016 Jan; 55(3):A71-85. PubMed ID: 26835960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.