These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29328136)

  • 21. Tunable scattering from liquid crystal devices using carbon nanotubes network electrodes.
    Khan AA; Dabera GD; Butt H; Qasim MM; Amaratunga GA; Silva SR; Wilkinson TD
    Nanoscale; 2015 Jan; 7(1):330-6. PubMed ID: 25407043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam.
    Xue Y; Wang Y; Zhou S; Chen H; Rui G; Gu B; Zhan Q
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):953-958. PubMed ID: 29877339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.
    Di Fabrizio E; Cojoc D; Emiliani V; Cabrini S; Coppey-Moisan M; Ferrari E; Garbin V; Altissimo M
    Microsc Res Tech; 2004 Nov; 65(4-5):252-62. PubMed ID: 15630683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers.
    Cordingley J
    Appl Opt; 1993 May; 32(14):2538-42. PubMed ID: 20820415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iterative algorithm for the design of diffractive phase elements for laser beam shaping.
    Liu JS; Taghizadeh MR
    Opt Lett; 2002 Aug; 27(16):1463-5. PubMed ID: 18026480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the chromaticity of near-field binary beam shapers.
    Dorrer C
    Appl Opt; 2013 May; 52(14):3368-80. PubMed ID: 23669853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-driven phase transition of diffractive optical elements based on liquid crystal elastomers.
    Chen L; Liu J; Cheng M; Wang Z; Cai W; Ma Z; Bai Z; Kong D; Cen M; Liu YJ
    Opt Express; 2024 Mar; 32(7):12528-12536. PubMed ID: 38571073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vector iterative algorithm for the design of diffractive optical elements applied to uniform illumination.
    Zhao Y; Li YP; Zhou QG
    Opt Lett; 2004 Apr; 29(7):664-6. PubMed ID: 15072351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffractive optical elements in single crystal diamond.
    Wildi T; Kiss M; Quack N
    Opt Lett; 2020 Jul; 45(13):3458-3461. PubMed ID: 32630871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of binary volumetric diffractive optical elements in photosensitive chalcogenide AMTIR-1 layers.
    Joërg A; Lumeau J
    Opt Lett; 2015 Jul; 40(14):3233-6. PubMed ID: 26176437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and fabrication of polarization-holographic elements for laser beam shaping.
    Fratz M; Sinzinger S; Giel D
    Appl Opt; 2009 May; 48(14):2669-77. PubMed ID: 19424387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precise design of two-dimensional diffractive optical elements for beam shaping.
    Qu W; Gu H; Tan Q; Jin G
    Appl Opt; 2015 Jul; 54(21):6521-5. PubMed ID: 26367838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional integrated optical elements for beam shaping with coherence scrambling property, realized by interference lithography.
    Burkhardt M; Brunner R
    Appl Opt; 2007 Oct; 46(28):7061-7. PubMed ID: 17906737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superresolution laser beam shaping.
    Jia J; Zhou C; Sun X; Liu L
    Appl Opt; 2004 Apr; 43(10):2112-7. PubMed ID: 15074420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband beam shaping with harmonic diffractive optics.
    Singh M; Tervo J; Turunen J
    Opt Express; 2014 Sep; 22(19):22680-8. PubMed ID: 25321737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional binary diffractive optical elements for structured light projectors.
    Barlev O; Golub MA
    Opt Express; 2018 Aug; 26(16):21092-21107. PubMed ID: 30119414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beam shaping using Gaussian beam modes.
    Lavelle J; O'Sullivan C
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):350-7. PubMed ID: 20126247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarization-Sensitive Patterning of Azopolymer Thin Films Using Multiple Structured Laser Beams.
    Porfirev AP; Khonina SN; Ivliev NA; Fomchenkov SA; Porfirev DP; Karpeev SV
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subwavelength-resolvable focused non-gaussian beam shaped with a binary diffractive optical element.
    Wang MR; Huang XG
    Appl Opt; 1999 Apr; 38(11):2171-6. PubMed ID: 18319777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Focusing anomalies with binary diffractive optical elements.
    Bouzid O; Haddadi S; Fromager M; Cagniot E; Ferria K; Forbes A; Ait-Ameur K
    Appl Opt; 2017 Dec; 56(35):9735-9741. PubMed ID: 29240119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.