These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29328249)

  • 1. Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing.
    Li Y; Fullager DB; Angelbello E; Childers D; Boreman G; Hofmann T
    Opt Lett; 2018 Jan; 43(2):239-242. PubMed ID: 29328249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-contrast infrared polymer photonic crystals fabricated by direct laser writing.
    Li Y; Fullager DB; Park S; Childers D; Fesperman R; Boreman G; Hofmann T
    Opt Lett; 2018 Oct; 43(19):4711-4714. PubMed ID: 30272721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing.
    Li QK; Cao JJ; Yu YH; Wang L; Sun YL; Chen QD; Sun HB
    Opt Lett; 2017 Feb; 42(3):543-546. PubMed ID: 28146523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures.
    Matsumura T; Young K; Wen Q; Hanany S; Ishino H; Inoue Y; Hazumi M; Koch J; Suttman O; Schütz V
    Appl Opt; 2016 May; 55(13):3502-9. PubMed ID: 27140362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam.
    Zhang F; Duan J; Zhou X; Wang C
    Opt Express; 2018 Dec; 26(26):34016-34030. PubMed ID: 30650832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of feature-distribution effects for anti-reflection structured surfaces on binary gratings.
    Gadamsetti P; Poutous MK
    Appl Opt; 2023 May; 62(13):3398-3408. PubMed ID: 37132840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR.
    Gonzalez FL; Gordon MJ
    Opt Express; 2014 Jun; 22(11):12808-16. PubMed ID: 24921476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching.
    Ye X; Jiang X; Huang J; Geng F; Sun L; Zu X; Wu W; Zheng W
    Sci Rep; 2015 Aug; 5():13023. PubMed ID: 26268896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing.
    Kowalczyk M; Haberko J; Wasylczyk P
    Opt Express; 2014 May; 22(10):12545-50. PubMed ID: 24921372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures.
    Chen L; Taverne MP; Zheng X; Lin JD; Oulton R; Lopez-Garcia M; Ho YL; Rarity JG
    Opt Express; 2015 Oct; 23(20):26565-75. PubMed ID: 26480169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General Strategy toward Dual-Scale-Controlled Metallic Micro-Nano Hybrid Structures with Ultralow Reflectance.
    Fan P; Bai B; Zhong M; Zhang H; Long J; Han J; Wang W; Jin G
    ACS Nano; 2017 Jul; 11(7):7401-7408. PubMed ID: 28665579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings.
    Ko YH; Yu JS
    Opt Express; 2011 Jan; 19(1):297-305. PubMed ID: 21263569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density.
    Paun IA; Calin BS; Popescu RC; Tanasa E; Moldovan A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of an Anti-Reflective Microstructure on ZnS by Femtosecond Laser Bessel Beams.
    Li X; Li M; Liu H; Guo Y
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region.
    Karlsson M; Nikolajeff F
    Opt Express; 2003 Mar; 11(5):502-7. PubMed ID: 19461757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method.
    Reynoso FJ; Lee CD; Cheong SK; Cho SH
    Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Laser Writing of Tubular Microtowers for 3D Culture of Human Pluripotent Stem Cell-Derived Neuronal Cells.
    Turunen S; Joki T; Hiltunen ML; Ihalainen TO; Narkilahti S; Kellomäki M
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25717-25730. PubMed ID: 28697300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antireflection microstructures fabricated on the surface of a LiGaSe
    Teslenko AA; Bushunov AA; Isaenko LI; Shklyaev A; Goloshumova A; Lobanov SI; Lazarev VA; Tarabrin MK
    Opt Lett; 2023 Mar; 48(5):1196-1199. PubMed ID: 36857247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Design and 3D Printing of a Metalens on an Optical Fiber Tip for Direct Laser Lithography.
    Hadibrata W; Wei H; Krishnaswamy S; Aydin K
    Nano Lett; 2021 Mar; 21(6):2422-2428. PubMed ID: 33720738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D direct laser writing using a 405  nm diode laser.
    Mueller P; Thiel M; Wegener M
    Opt Lett; 2014 Dec; 39(24):6847-50. PubMed ID: 25503012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.