BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29328319)

  • 21. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited].
    Soto JM; Rodrigo JA; Alieva T
    Appl Opt; 2018 Jan; 57(1):A205-A214. PubMed ID: 29328147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-coherent optical diffraction tomography by angle-scanning illumination.
    Lee K; Shin S; Yaqoob Z; So PTC; Park Y
    J Biophotonics; 2019 May; 12(5):e201800289. PubMed ID: 30597743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method.
    Wang J; Zhao X; Wang Y; Li D
    Opt Express; 2024 Jan; 32(2):2081-2096. PubMed ID: 38297745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography.
    Cheng J; Gu C; Zhang D; Wang D; Chen SC
    Opt Lett; 2016 Apr; 41(7):1451-4. PubMed ID: 27192259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers.
    Chen X; Yan BB; Song FJ; Wang YQ; Xiao F; Alameh K
    Appl Opt; 2012 Oct; 51(30):7214-20. PubMed ID: 23089774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multicolor structured illumination microscopy and quantitative control of polychromatic light with a digital micromirror device.
    Brown PT; Kruithoff R; Seedorf GJ; Shepherd DP
    Biomed Opt Express; 2021 Jun; 12(6):3700-3716. PubMed ID: 34221689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging.
    Kim K; Park WS; Na S; Kim S; Kim T; Heo WD; Park Y
    Biomed Opt Express; 2017 Dec; 8(12):5688-5697. PubMed ID: 29296497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Digital micromirror devices: principles and applications in imaging.
    Bansal V; Saggau P
    Cold Spring Harb Protoc; 2013 May; 2013(5):404-11. PubMed ID: 23637366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination.
    Zhu J; Zhou P; Su X; You Z
    Opt Express; 2016 Dec; 24(25):28549-28560. PubMed ID: 27958499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera.
    Ri S; Fujigaki M; Morimoto Y
    Appl Opt; 2008 Oct; 47(29):5400-7. PubMed ID: 18846182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A digital micromirror device-based Hadamard transform near infrared spectrometer].
    Liu J; Chen FF; Liao CS; Xu Q; Zeng LB; Wu QS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Oct; 31(10):2874-8. PubMed ID: 22250575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-speed flame chemiluminescence imaging using time-multiplexed structured detection.
    Gragston M; Smith CD; Zhang Z
    Appl Opt; 2018 Apr; 57(11):2923-2929. PubMed ID: 29714296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography.
    Schürmann M; Cojoc G; Girardo S; Ulbricht E; Guck J; Müller P
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 28800386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-free imaging and analysis of subcellular parts of a living diatom cylindrotheca sp. using optical diffraction tomography.
    Umemura K; Matsukawa Y; Ide Y; Mayama S
    MethodsX; 2020; 7():100889. PubMed ID: 32382522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique.
    Lee M; Shin S; Park Y
    Opt Express; 2017 Oct; 25(22):27415-27430. PubMed ID: 29092215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device.
    Park JK; Rowlands CJ; So PTC
    Micromachines (Basel); 2017; 8(3):. PubMed ID: 29387484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera.
    Feng W; Zhang F; Qu X; Zheng S
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography.
    Zhou N; Li J; Sun J; Zhang R; Bai Z; Zhou S; Chen Q; Zuo C
    Opt Lett; 2022 Feb; 47(4):969-972. PubMed ID: 35167571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternating projection combined with fast gradient projection (FGP-AP) method for intensity-only measurement optical diffraction tomography in LED array microscopy.
    Yang Z; Zhang L; Liu T; Wang H; Tang Z; Zhao H; Yuan L; Zhang Z; Liu X
    Biomed Opt Express; 2024 Apr; 15(4):2524-2542. PubMed ID: 38633101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.
    Yih JN; Hu YY; Sie YD; Cheng LC; Lien CH; Chen SJ
    Opt Lett; 2014 Jun; 39(11):3134-7. PubMed ID: 24875995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.