These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29328332)

  • 1. Wavelength tuning of surface plasmon coupled quantum well infrared photodetectors.
    Hsu WC; Ling HS; Wang SY; Lee CP
    Opt Express; 2018 Jan; 26(1):552-558. PubMed ID: 29328332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stacked Dual-Band Quantum Well Infrared Photodetector Based on Double-Layer Gold Disk Enhanced Local Light Field.
    Liu C; Zuo X; Xu S; Wang L; Xiong D
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors.
    Ku Z; Jang WY; Zhou J; Kim JO; Barve AV; Silva S; Krishna S; Brueck SR; Nelson R; Urbas A; Kang S; Lee SJ
    Opt Express; 2013 Feb; 21(4):4709-16. PubMed ID: 23482003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the extraordinary transmission in a metallic/dielectric CDC hole array by changing the temperature.
    Wang W; Lu Y; Knize RJ; Reinhardt K; Chen S
    Opt Express; 2010 Jul; 18(15):15553-9. PubMed ID: 20720935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design principle of Au grating couplers for quantum-well infrared photodetectors.
    Zhang C; Chang H; Zhao F; Hu X
    Opt Lett; 2013 Oct; 38(20):4037-9. PubMed ID: 24321915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced response over wavelength range of 7-12 µm for quantum wells in asymmetric micro-pillars.
    Wei-Wei L; Xin-Yang J; Rui X; Li Y; Hui X; Ning L; Zhi-Feng L; Wei L; Tian-Xin L
    Opt Express; 2024 Jun; 32(12):20669-20681. PubMed ID: 38859443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.
    Liu L; Chen Y; Huang Z; Du W; Zhan P; Wang Z
    Sci Rep; 2016 Jul; 6():30414. PubMed ID: 27456691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auto-Calibrated Charge-Sensitive Infrared Phototransistor at 9.3 µm.
    Bahrehmand M; Gacemi D; Vasanelli A; Li L; Davies AG; Linfield E; Sirtori C; Todorov Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual color infrared photodetector with superconducting metamaterials.
    Chen B; Pan H; Zhu L; Xu H; Wang H; Zhang L; Yan X; Ma C; Xu X; Lu W; An Z; Song Y
    Opt Express; 2023 Feb; 31(5):7440-7449. PubMed ID: 36859874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Photon Absorptivity of Quantum Dot Infrared Photodetectors Achieved by the Surface Plasmon Effect of Metal Nanohole Array.
    Liu H; Kang Y; Meng T; Tian C; Wei G
    Nanoscale Res Lett; 2020 May; 15(1):98. PubMed ID: 32372245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region.
    Shu S; Li YY
    Opt Lett; 2015 Mar; 40(6):934-7. PubMed ID: 25768150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SiGe quantum well infrared photodetectors on strained-silicon-on-insulator.
    Aberl J; Brehm M; Fromherz T; Schuster J; Frigerio J; Rauter P
    Opt Express; 2019 Oct; 27(22):32009-32018. PubMed ID: 31684421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-particle coupling and plasmon tuning of multilayer Au/dielectric/Au nanocrescents adhered to a dielectric cylinder.
    Wu KY; Cheng XL; Lee LP
    Nanotechnology; 2012 Feb; 23(5):055201. PubMed ID: 22238274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors.
    Wang H; Zhen H; Li S; Jing Y; Huang G; Mei Y; Lu W
    Sci Adv; 2016 Aug; 2(8):e1600027. PubMed ID: 27536723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of κ-([Al,In]
    Schultz T; Kneiß M; Storm P; Splith D; von Wenckstern H; Koch CT; Hammud A; Grundmann M; Koch N
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29535-29541. PubMed ID: 37278556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing ultrathin and thick organic layers by surface plasmon resonance three-wavelength and waveguide mode analysis.
    Granqvist N; Liang H; Laurila T; Sadowski J; Yliperttula M; Viitala T
    Langmuir; 2013 Jul; 29(27):8561-71. PubMed ID: 23758623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.
    Liu X; Li D; Sun X; Li Z; Song H; Jiang H; Chen Y
    Sci Rep; 2015 Jul; 5():12555. PubMed ID: 26218501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodium-embedded UV photodetectors based on localized surface plasmon resonance on AlN/GaN.
    Hu X; Chen B; Huang C; Qiu H; Gao N; Wu Y; Cai D; Huang K; Kang J; Zhang R
    Nanoscale; 2023 Jun; 15(22):9684-9690. PubMed ID: 37165668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmon-induced emission enhancement of a green light-emitting diode.
    Yeh DM; Huang CF; Chen CY; Lu YC; Yang CC
    Nanotechnology; 2008 Aug; 19(34):345201. PubMed ID: 21730639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive model of electrical noise in AlGaAs/GaAs long-wavelength quantum well infrared photodetectors.
    Xiong D; Qiu W; Weng Q; Zhu S
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11206-10. PubMed ID: 22409086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.