These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29328337)

  • 1. Development and validation of a simulation method, PeCHREM, for evaluating spatio-temporal concentration changes of paddy herbicides in rivers.
    Imaizumi Y; Suzuki N; Shiraishi F; Nakajima D; Serizawa S; Sakurai T; Shiraishi H
    Environ Sci Process Impacts; 2018 Jan; 20(1):120-132. PubMed ID: 29328337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of pesticide runoff from paddy fields to rural rivers.
    Numabe A; Nagahora S
    Water Sci Technol; 2006; 53(2):139-46. PubMed ID: 16594332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on pesticide runoff from paddy fields to a river in rural region--1: field survey of pesticide runoff in the Kozakura River, Japan.
    Nakano Y; Miyazaki A; Yoshida T; Ono K; Inoue T
    Water Res; 2004 Jul; 38(13):3017-22. PubMed ID: 15261539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting herbicides concentrations in paddy water and runoff to the river basin.
    Parveen S; Kohguchi T; Biswas M; Nakagoshi N
    J Environ Sci (China); 2005; 17(4):631-6. PubMed ID: 16158594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of concentrations of paddy herbicides and their transformation products in the Sakura River, Japan, and toxicity of the compounds to a diatom and a green alga.
    Iwafune T; Ara T; Ishihara S; Yokoyama A; Nagai T; Horio T
    Bull Environ Contam Toxicol; 2012 Jan; 88(1):38-42. PubMed ID: 21996720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticides in the RhĂ´ne river delta (France): basic data for a field-based exposure assessment.
    Comoretto L; Arfib B; Chiron S
    Sci Total Environ; 2007 Jul; 380(1-3):124-32. PubMed ID: 17324449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological risk assessment of herbicides in Japan: Integrating spatiotemporal variation in exposure and effects using a multimedia model and algal density dynamics models.
    Hayashi TI; Imaizumi Y; Yokomizo H; Tatarazako N; Suzuki N
    Environ Toxicol Chem; 2016 Jan; 35(1):233-40. PubMed ID: 26183805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment.
    Papadakis EN; Vryzas Z; Kotopoulou A; Kintzikoglou K; Makris KC; Papadopoulou-Mourkidou E
    Ecotoxicol Environ Saf; 2015 Jun; 116():1-9. PubMed ID: 25733189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration and application of the Chemcatcher® passive sampler for monitoring acidic herbicides in the River Exe, UK catchment.
    Townsend I; Jones L; Broom M; Gravell A; Schumacher M; Fones GR; Greenwood R; Mills GA
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25130-25142. PubMed ID: 29943243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diuron, Irgarol 1051 and Fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan.
    Kaonga CC; Takeda K; Sakugawa H
    Sci Total Environ; 2015 Jun; 518-519():450-8. PubMed ID: 25777951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers.
    Van Metre PC; Alvarez DA; Mahler BJ; Nowell L; Sandstrom M; Moran P
    Environ Pollut; 2017 Jan; 220(Pt A):431-440. PubMed ID: 27697376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in concentrations and use of agricultural herbicides for Corn Belt rivers, 1996-2006.
    Vecchia AV; Gilliom RJ; Sullivan DJ; Lorenz DL; Martin JD
    Environ Sci Technol; 2009 Dec; 43(24):9096-102. PubMed ID: 20000498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selecting analytical target pesticides in monitoring: Sensitivity analysis and scoring.
    Tani K; Matsui Y; Iwao K; Kamata M; Matsushita T
    Water Res; 2012 Mar; 46(3):741-9. PubMed ID: 22154284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pesticide uses and transfers in urbanised catchments.
    Blanchoud H; Farrugia F; Mouchel JM
    Chemosphere; 2004 May; 55(6):905-13. PubMed ID: 15041295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing pharmaceutical and pesticide loads into a small Mediterranean river.
    Comoretto L; Chiron S
    Sci Total Environ; 2005 Oct; 349(1-3):201-10. PubMed ID: 16198681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating pesticide runoff in small streams.
    Schriever CA; von der Ohe PC; Liess M
    Chemosphere; 2007 Aug; 68(11):2161-71. PubMed ID: 17395242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. National trends in pesticides in drinking water and water sources in Japan.
    Kamata M; Matsui Y; Asami M
    Sci Total Environ; 2020 Nov; 744():140930. PubMed ID: 32711323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.