These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29328630)

  • 1. Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics.
    Zhao C; Wu J
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3680-3688. PubMed ID: 29328630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced dielectric loss in new colossal permittivity (Pr, Nb)TiO
    Liu Z; Zhao C; Wu B; Wu J
    Phys Chem Chem Phys; 2018 Aug; 20(34):21814-21821. PubMed ID: 30128467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance colossal permittivity materials of (Nb + Er) co-doped TiO2 for large capacitors and high-energy-density storage devices.
    Tse MY; Wei X; Hao J
    Phys Chem Chem Phys; 2016 Sep; 18(35):24270-7. PubMed ID: 27530725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colossal Permittivity Characteristics of (Nb, Si) Co-Doped TiO
    Kotb HM; Alshoaibi A; Mazher J; Shaalan NM; Ahmad MM
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of colossal dielectric permittivity of rutile Ti₀.₉In₀.₀₅Nb₀.₀₅O₂: single crystal and polycrystalline.
    Song Y; Wang X; Sui Y; Liu Z; Zhang Y; Zhan H; Song B; Liu Z; Lv Z; Tao L; Tang J
    Sci Rep; 2016 Feb; 6():21478. PubMed ID: 26869187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.
    Dong W; Hu W; Berlie A; Lau K; Chen H; Withers RL; Liu Y
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25321-5. PubMed ID: 26512874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric properties of Y and Nb co-doped TiO
    Wang X; Zhang B; Xu L; Wang X; Hu Y; Shen G; Sun L
    Sci Rep; 2017 Aug; 7(1):8517. PubMed ID: 28819129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant dielectric response and relaxation behavior in (Tm + Ta) co-doped TiO
    Fan J; Chen Y; Long Z; Tong L; He G; Hu Z
    Phys Chem Chem Phys; 2022 Feb; 24(8):4759-4768. PubMed ID: 35142764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colossal permittivity behavior and its origin in rutile (Mg
    Dong W; Chen D; Hu W; Frankcombe TJ; Chen H; Zhou C; Fu Z; Wei X; Xu Z; Liu Z; Li Y; Liu Y
    Sci Rep; 2017 Aug; 7(1):9950. PubMed ID: 28855617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of dielectric relaxation behavior in TiO
    Zhou L; Yang G; Yang D; Xu J; Peng Z; Wu D; Wei L; Liang P; Chao X; Yang Z
    Phys Chem Chem Phys; 2023 Mar; 25(10):7373-7382. PubMed ID: 36825987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Primary Origin of Excellent Dielectric Properties of (Co, Nb) Co-Doped TiO
    Nachaithong T; Chanlek N; Moontragoon P; Thongbai P
    Molecules; 2021 May; 26(11):. PubMed ID: 34072170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics.
    Li J; Li F; Li C; Yang G; Xu Z; Zhang S
    Sci Rep; 2015 Feb; 5():8295. PubMed ID: 25656713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT calculations and giant dielectric responses in (Ni
    Thongyong N; Thongbai P; Srepusharawoot P
    RSC Adv; 2023 Oct; 13(45):31844-31854. PubMed ID: 37920200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant dielectric response and relaxation behavior of Bi
    Yang G; Peng Z; Liu H; Wu D; Liang P; Wei L; Chao X; Yang Z
    Phys Chem Chem Phys; 2024 Mar; 26(11):8834-8841. PubMed ID: 38426247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Charge Compensation on Colossal Permittivity and Electrical Properties of Grain Boundary of CaCu
    Boonlakhorn J; Manyam J; Srepusharawoot P; Krongsuk S; Thongbai P
    Molecules; 2021 May; 26(11):. PubMed ID: 34070803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural Evolution and High-Performance Giant Dielectric Properties of Lu
    Thanamoon N; Chanlek N; Srepusharawoot P; Swatsitang E; Thongbai P
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO
    Kawarasaki M; Tanabe K; Terasaki I; Fujii Y; Taniguchi H
    Sci Rep; 2017 Jul; 7(1):5351. PubMed ID: 28706304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-pinned defect-dipoles for high-performance colossal permittivity materials.
    Hu W; Liu Y; Withers RL; Frankcombe TJ; Norén L; Snashall A; Kitchin M; Smith P; Gong B; Chen H; Schiemer J; Brink F; Wong-Leung J
    Nat Mater; 2013 Sep; 12(9):821-6. PubMed ID: 23812129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of colossal dielectric response in (In + Nb) co-doped TiO
    Ke S; Li T; Ye M; Lin P; Yuan W; Zeng X; Chen L; Huang H
    Sci Rep; 2017 Aug; 7(1):10144. PubMed ID: 28860639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colossal dielectric permittivity in Co-doped ZnO ceramics prepared by a pressure-less sintering method.
    Pessoni HVS; Banerjee P; Franco A
    Phys Chem Chem Phys; 2018 Nov; 20(45):28712-28719. PubMed ID: 30411101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.