BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29328665)

  • 1. Coalescence Dynamics of Mobile and Immobile Fluid Interfaces.
    Vakarelski IU; Manica R; Li EQ; Basheva ES; Chan DYC; Thoroddsen ST
    Langmuir; 2018 Feb; 34(5):2096-2108. PubMed ID: 29328665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-Rising Bubbles Bounce More Strongly from Mobile than from Immobile Water-Air Interfaces.
    Vakarelski IU; Yang F; Thoroddsen ST
    Langmuir; 2020 Jun; 36(21):5908-5918. PubMed ID: 32380834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why Bubbles Coalesce Faster than Droplets: The Effects of Interface Mobility and Surface Charge.
    Vakarelski IU; Kamoliddinov F; Thoroddsen ST
    Langmuir; 2024 May; 40(21):11340-11351. PubMed ID: 38748812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coalescence of Bubbles with Mobile Interfaces in Water.
    Liu B; Manica R; Liu Q; Klaseboer E; Xu Z; Xie G
    Phys Rev Lett; 2019 May; 122(19):194501. PubMed ID: 31144923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Interaction between a Millimeter-Sized Bubble and Surface Microbubbles in Water.
    Liu B; Manica R; Zhang X; Bussonnière A; Xu Z; Xie G; Liu Q
    Langmuir; 2018 Oct; 34(39):11667-11675. PubMed ID: 30183304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrodynamics of bubble rise and impact with solid surfaces.
    Manica R; Klaseboer E; Chan DYC
    Adv Colloid Interface Sci; 2016 Sep; 235():214-232. PubMed ID: 27378067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions.
    Yaminsky VV; Ohnishi S; Vogler EA; Horn RG
    Langmuir; 2010 Jun; 26(11):8061-74. PubMed ID: 20146434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble coalescence during acoustic cavitation in aqueous electrolyte solutions.
    Browne C; Tabor RF; Chan DY; Dagastine RR; Ashokkumar M; Grieser F
    Langmuir; 2011 Oct; 27(19):12025-32. PubMed ID: 21866892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubbles with tunable mobility of surfaces in ethanol-NaCl aqueous solutions.
    Zhang X; Manica R; Tang Y; Liu Q; Xu Z
    J Colloid Interface Sci; 2019 Nov; 556():345-351. PubMed ID: 31465965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics.
    Tan SY; Ata S; Wanless EJ
    J Phys Chem B; 2013 Jul; 117(28):8579-88. PubMed ID: 23796213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coalescence of bubbles translating through a tube.
    Almatroushi E; Borhan A
    Ann N Y Acad Sci; 2006 Sep; 1077():508-26. PubMed ID: 17124143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coalescence or Bounce? How Surfactant Adsorption in Milliseconds Affects Bubble Collision.
    Liu B; Manica R; Liu Q; Klaseboer E; Xu Z
    J Phys Chem Lett; 2019 Sep; 10(18):5662-5666. PubMed ID: 31368716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coalescence and stability analysis of surface nanobubbles on the polystyrene/water interface.
    Li D; Jing D; Pan Y; Wang W; Zhao X
    Langmuir; 2014 Jun; 30(21):6079-88. PubMed ID: 24818697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalescence of surface bubbles: The crucial role of motion-induced dynamic adsorption layer.
    Zawala J; Miguet J; Rastogi P; Atasi O; Borkowski M; Scheid B; Fuller GG
    Adv Colloid Interface Sci; 2023 Jul; 317():102916. PubMed ID: 37269558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Rising Bubbles and Their Impact with Viscoelastic Fluid Interfaces.
    Zhang Y; Liu C; Tang X; Dong X; He T; Wang H; Zang D
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of pH-induced coalescence of latex-stabilized bubbles using high-speed video imaging.
    Ata S; Davis ES; Dupin D; Armes SP; Wanless EJ
    Langmuir; 2010 Jun; 26(11):7865-74. PubMed ID: 20415444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile-surface bubbles and droplets coalesce faster but bounce stronger.
    Vakarelski IU; Yang F; Tian YS; Li EQ; Chan DYC; Thoroddsen ST
    Sci Adv; 2019 Oct; 5(10):eaaw4292. PubMed ID: 31692762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact and bounce of air bubbles at a flat fluid interface.
    Manica R; Klaseboer E; Chan DY
    Soft Matter; 2016 Apr; 12(13):3271-82. PubMed ID: 26924623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclonal Antibody Interfaces: Dilatation Mechanics and Bubble Coalescence.
    Kannan A; Shieh IC; Leiske DL; Fuller GG
    Langmuir; 2018 Jan; 34(2):630-638. PubMed ID: 29251942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field.
    Jiao J; He Y; Yasui K; Kentish SE; Ashokkumar M; Manasseh R; Lee J
    Ultrason Sonochem; 2015 Jan; 22():70-7. PubMed ID: 25043557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.