BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29328679)

  • 1. Effect of End-Grafted Polymer Conformation on Protein Resistance.
    Han Y; Ma J; Hu Y; Jin J; Jiang W
    Langmuir; 2018 Feb; 34(5):2073-2080. PubMed ID: 29328679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydrophilicity of end-grafted polymers on protein adsorption behavior: A Monte Carlo study.
    Han Y; Jin J; Cui J; Jiang W
    Colloids Surf B Biointerfaces; 2016 Jun; 142():38-45. PubMed ID: 26925724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface grafted polymers on the adsorption of different model proteins.
    Jönsson M; Johansson HO
    Colloids Surf B Biointerfaces; 2004 Sep; 37(3-4):71-81. PubMed ID: 15342016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading and brush formation by end-grafted bottle-brush polymers with adsorbing side chains.
    Wernersson E; Linse P
    Langmuir; 2013 Aug; 29(33):10455-62. PubMed ID: 23924341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein adsorption on surfaces with grafted polymers: a theoretical approach.
    Szleifer I
    Biophys J; 1997 Feb; 72(2 Pt 1):595-612. PubMed ID: 9017189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface adsorption of colloidal brushes at good solvents conditions.
    Striolo A
    J Chem Phys; 2012 Sep; 137(10):104703. PubMed ID: 22979882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory for adsorption of colloids on the polymer-tethered surfaces: effect of polymer chain architecture.
    Xu X; Cao D
    J Chem Phys; 2009 Apr; 130(16):164901. PubMed ID: 19405624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of protein adsorption and desorption on surfaces with grafted polymers.
    Fang F; Satulovsky J; Szleifer I
    Biophys J; 2005 Sep; 89(3):1516-33. PubMed ID: 15994887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen bonding induced protein adsorption on polymer brushes: a Monte Carlo study.
    Han Y; Cui J; Jin J; Jiang W
    J Mater Chem B; 2017 Nov; 5(43):8479-8486. PubMed ID: 32264515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loops, tails and trains: A simple model for structural transformations of grafted adsorbing neutral polymer brushes.
    Manciu M; Ruckenstein E
    J Colloid Interface Sci; 2011 Feb; 354(1):61-9. PubMed ID: 21074164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid POSS-containing brush on gold surfaces for protein resistance.
    Ye X; Gong J; Wang Z; Zhang Z; Han S; Jiang X
    Macromol Biosci; 2013 Jul; 13(7):921-6. PubMed ID: 23703844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of monomer sequences on conformations of copolymers grafted on spherical nanoparticles: a Monte Carlo simulation study.
    Seifpour A; Spicer P; Nair N; Jayaraman A
    J Chem Phys; 2010 Apr; 132(16):164901. PubMed ID: 20441304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental-theoretical analysis of protein adsorption on peptidomimetic polymer brushes.
    Lau KH; Ren C; Park SH; Szleifer I; Messersmith PB
    Langmuir; 2012 Jan; 28(4):2288-98. PubMed ID: 22107438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Assembly Inspired by Marine Mussels and Antifouling Effects of Polypeptoids: A Neutron Reflection Study.
    Pan F; Aaron Lau KH; Messersmith PB; Lu JR; Zhao X
    Langmuir; 2020 Oct; 36(41):12309-12318. PubMed ID: 32970448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of polymer topology on biointeractions of polymer brushes: Comparison of cyclic and linear polymers.
    Wei T; Zhou Y; Zhan W; Zhang Z; Zhu X; Yu Q; Chen H
    Colloids Surf B Biointerfaces; 2017 Nov; 159():527-532. PubMed ID: 28846962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes.
    Chang Y; Chang Y; Higuchi A; Shih YJ; Li PT; Chen WY; Tsai EM; Hsiue GH
    Langmuir; 2012 Mar; 28(9):4309-17. PubMed ID: 22268580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical adsorption of a flexible polymer confined between two parallel interacting surfaces.
    Li H; Qian CJ; Wang C; Luo MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012602. PubMed ID: 23410351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.